Project description
Sensing metabolic markers in energetic organelles
All cells require energy to carry out their many functions. Boosting the efficiency of metabolic pathways can enhance the production of molecules for biotechnology applications in medicine or industry. Given its wide-reaching importance, bioenergetics has emerged as a field of its own, and mitochondria and chloroplasts play a starring role. NextGen-O2k is developing a namesake multi-sensor platform that will boost the reproducibility and resolution of analyses related to molecular metabolic markers in mitochondria and chloroplasts. The tool promises to streamline the time and money required to assess the functional fitness of these organelles, with important implications for human health and industrial biotechnology.
Objective
Mitochondria and chloroplasts are key elements to face the new challenges of the millennia for biomedicine, biotechnology and to develop a sustainable bio-economy. Mitochondrial fitness is a key parameter for diagnosis and therapeutic applications on multiple human pathologies, such as neurodegenerative diseases, diabetes and cancer. On the other hand, the optimization of algal growth rate and metabolite production in biotechnology requires novel investigations and monitoring of the bioenergetic pathway control exerted by mitochondria and chloroplasts.
However, current technologies to study mitochondrial and chloroplast function are limited, providing segmented information, lacking inter-laboratory reproducibility and hindering our advance towards therapeutic and biotech interventions of cellular bioenergetics. As a result, the understanding of cellular bioenergetics for medical and algal biotechnology applications remains poor.
The overall objective of this project is to complete the development of NextGen-O2k and prepare its market launch in 2021. NextGen-O2k is a multi-sensor platform for in-depth study of mitochondrial and chloroplast functional fitness. In a compact and affordable device, we have integrated several sensors for detecting multiple key parameters of bioenergetics, with superior resolution and reproducibility.
With NextGen-O2k we will provide researchers with a tool able to improve knowledge about mitochondrial dysfunction and chloroplast photosynthesis, while bringing savings in experimental time, samples and funds.
NextGen-O2k project is a step forward towards understanding mitochondrial implication in human pathologies and in the optimization of biomass production in many areas of biotechnology. Our focus in on generating knowledge about mitochondrial function and dysfunction, chloroplast photosynthesis and algal metabolism, while contributing to address the science reproducibility crisis.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Programme(s)
Funding Scheme
SME-2 - SME instrument phase 2Coordinator
6020 Innsbruck
Austria
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.