Project description
Reservoirs of nanomagnets may boost processing power
Computing power struggles to keep up with analysis demands as data generation keep increasing exponentially. Realizing new platforms for massively parallel data processing, where large amounts of data are processed 'all at once' rather than piece-by-piece, is key to closing this gap. Now, SpinENGINE is combining two cutting-edge concepts, reservoir computing and nanomagnet ensemble dynamics, to realise this vision. Reservoir computing utilises a reservoir with highly nonlinear dynamics that projects input signals onto high-dimensional spaces and use simple linear processing techniques to extract an output. SpinENGINE is using the emergent and tuneable nonlinear interactions in nanomagnet ensembles as the reservoir to create a new massively parallel, computational device.
Objective
The SpinENGINE project will lay the foundations for a new, massively parallel, computational platform based on emergent behaviour in large nanomagnet ensembles. The project will develop an efficient, highly scalable, and easily reproducible platform meeting the data analysis challenges in our increasingly data-rich society. We will build upon our recent discoveries and use complex, nonlinear, and highly tunable interactions in such ensembles to realize a hardware platform for “Reservoir Computing”, a biologically-inspired computational approach. Our critical hypothesis is that the synergies between the inherent properties of nanomagnet ensembles and those required for reservoir computing will enable the efficient creation of a highly adaptive computational platform for the analysis of complex, dynamic data sets. This has the potential to greatly outperform current approaches using conventional CMOS hardware.
SpinENGINE will bring together a multidisciplinary team of researchers with expertise in computer science, condensed matter physics, material science, computational modelling, and high-resolution microscopy. This will enable us to simultaneously explore the fundamental behaviours of nanomagnet ensembles and understand how these can be harnessed for useful computation. By the end of the project, we aim to fabricate a proof-of-concept device capable of solving pattern recognition and classification problems, and, in collaboration with our industrial partner, IBM, produce a roadmap to the further scaling and commercialization of our computational platform. Success in the SpinENGINE project will have vast implications for data analysis at all scales, ranging from low power computation in the simplest sensor node to accelerated data processing in the most complex supercomputer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7491 Trondheim
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.