Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Application of Functionally Graded Materials to Extra-Large Structures

Project description

A 3D-printing method for high-performance large structures

Large engineering structures like turbines, bridges or industrial machinery are still manufactured by traditional processes such as forging and casting. These processes do not allow engineers to control material properties locally in order to achieve anti-corrosion or hardness functions, only at the exposed or loaded locations. The EU-funded Grade2XL project will tap into the potential of wire arc additive manufacturing. This method combines high printing rates with the ability to control material properties down to the nanoscale, enabling the design of strong and durable engineering structures. The project is expected to deliver devices of superior quality and performance, cut lead times by up to 96 % and unlock massive cost savings for the maritime and energy industries.

Objective

Large engineering structures like turbines, bridges or industrial machinery are still manufactured by traditional processes such as forging, casting or by machining from solid blocks. These processes do not allow local control of material properties to achieve a specific function like anti-corrosion or hardness. To meet the functional specifications, engineers must operate within a limited range of design options, with high “buy-to-fly” ratios and long lead times.

Unlike any other metal AM technology, wire arc additive manufacturing (WAAM) produces fully dense metallic structures with no porosity. WAAM is also unbeatable in terms of production times, making it uniquely suited for large and functionally demanding engineering structures.

In Grade2XL, we will demonstrate the potential of multi-material wire arc additive manufacturing (WAAM) for large scale structures. The high printing rate of WAAM, combined with the ability to control material properties down to the nanoscale, will allow us to build strong and durable engineering structures. Grade2XL will deliver multi-material products of superior quality and performance, cut lead times by up to 96% and enable massive cost savings for the maritime and energy industry, as well as for industrial machinery. These outputs will rapidly roll out to other sectors with similar key performance indicators and become an attractive investment opportunity for SMEs. This project will strengthen Europe’s capacity to drive manufacturing innovation globally and withstand growing competition from Asia.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IA - Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-NMBP-TR-IND-2018-2020

See all projects funded under this call

Coordinator

STICHTING MATERIALS INNOVATION INSTITUTE (M2I)
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 457 375,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 457 375,00

Participants (21)

My booklet 0 0