Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multimodal X-ray and Hyperspectral Thin-Film Nano-material Evaluation and Quality Imaging

Project description

Real-time evaluation of nanomaterial production at industrial scale

Advances in nanotechnology and materials science have led to an array of novel nanomaterials and thin films with a variety of potential applications. Characterisation of the dimensions, structure and chemical composition of these nanomaterials is central for optimising their functional performance. Towards this goal, the EU-funded NanoQI project aims to advance X-ray characterisation techniques such as X-ray diffraction analysis and X-ray reflectometry for industrial access. Although widely employed in research, technical limitations hamper the use of these techniques in industrial material development and production assessment processes. The NanoQI technology's capacity for real-time evaluation of nanomaterial properties in industrial applications will improve reproducibility and yield and upscale nanomaterial production.

Objective

Functional performances of nano-materials and thin films with nano-scale thickness are determined not only by material selection but also by their nano-physical dimensions, nano-scale structure and their nano-scale chemical composition. Precise characterisation of these properties is critical to develop new functional nano-materials and optimise processes toward higher performance, improved reproducibility and yield and up-scaling to larger quantities. X-ray characterisation techniques such as X-ray diffraction analysis (XRD) or X-ray reflectometry (XRR) are widely used in research laboratories for this task but are rarely used in industrial material development and assessment of production processes due to technical limitations and required high level expertise.

The project NanoQI targets the development of an industry-suited, real-time and in-line capable technique to characterise nano-structure and nano-dimensions of (thin-film) nano-materials by optimisation of area-detector based XRR and XRD concepts and their multi-modal combination with a novel wide-angle hyper-spectral imaging (HSI) technique. Therewith, NanoQI will provide industry access to real time evaluation of nano-material geometry, structure and morphology and correlative imaging of deviations of these properties.

NanoQI technology will be demonstrated in three relevant industrial application scenarios: in-situ process assessment in manufacturing of perovskite solar cells; large-area vacuum roll-to-roll coating of polymer webs and industrial atomic layer deposition of dielectric and gas barrier layers.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-NMBP-TO-IND-2018-2020

See all projects funded under this call

Coordinator

FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 256 780,00
Address
HANSASTRASSE 27C
80686 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 256 780,00

Participants (7)

My booklet 0 0