Project description
Energy harvesting technology for use in remote locations
In recent years, with the swift transfer of everyday interests to the internet, as well as the rising trend of smart technologies, the use of electronics in daily life has increased exponentially. Additionally, with current IoT scenarios expecting around 75 billion connected devices by 2025, their use is bound to keep increasing. Unfortunately, this could be dangerous for the environment, especially in remote areas with little access to power generation. Energy harvesting is a technology that could assist with this problem, but it’s not efficient enough as of yet. The EU-funded SYMPHONY project aims to tackle this problem by developing new cost-efficient materials along with a fabrication process that will allow the production of cost-efficient multimodal energy harvesting solutions.
Objective
The 21st century has been dominated by an ambient digitalization, a trend that is mirrored by the use of catchwords such as Smart Energy, Smart Homes & Smart Cities and the increasing use of electronics in everyday objects. Current IoT scenarios expect a number of around 75 billion connected devices by 2025, and the powering of these devices by batteries will result in a considerable amount of potentially hazardous waste. The spread of electronic systems in remote locations should thus be accompanied by a change in power generation, making use of dislocated and disordered energy sources. A cost-efficient and environmentally friendly realization of energy harvesting (EH), however, is still a challenge, as the required input of functional material and electronic components in comparison to the energy output is high and often involves lead-based materials, manufacturing methods that consume high amounts of energy and costly assembly steps.
SYMPHONY aims for the development of new materials for low-cost and scalable printing and structuring processes to fabricate multimodal EH solutions based on the ferroelectric polymer P(VDF-TrFE) as well as printed energy storage devices and rectifiers not using rare elements and heavy metals. The hybrid integration of these devices on flexible films with low power harvesting ICs will result in a specific cost below 1€/mW (well below the value for piezoceramic and electrodynamic EH). The reduction of hazardous waste and energy consumption in SYMPHONY starts with material selection and manufacturing, but ultimately unfolds its full potential in the most CO2-relevant application areas: renewable energy generation, room heating/cooling and mobility. The innovative EH concept of SYMPHONY used to power distributed sensor nodes will reduce emissions by 50% increasing the efficiency of wind turbines (Smart Energy), making room heating/cooling 20% more efficient (Smart Home) and supporting the transformation of urban mobility (Smart City).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology civil engineering urban engineering smart cities
- natural sciences computer and information sciences internet internet of things
- natural sciences chemical sciences polymer sciences
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems home automation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-NMBP-ST-IND-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8010 GRAZ
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.