Projektbeschreibung
Energieernte in entlegenen Regionen
Mit der rasanten Verschiebung von Alltagsdingen ins Internet sowie dem wachsenden Trend der intelligenten Technologien der letzten Jahre hat die Nutzung von Elektronik im täglichen Leben exponentiell zugenommen. Und angesichts denkbarer Szenarien eines Internets der Dinge, das bis 2025 etwa 75 Milliarden Geräte miteinander verknüpfen wird, ist davon auszugehen, dass sie weiter steigt. Doch besonders in entlegenen Gegenden, die nur schlechten Zugang zu Stromversorgung haben, könnte das für die Umwelt zur Gefahr werden. Die Technologie der Energieernte könnte zwar dabei helfen, aber noch ist ihr Wirkungsgrad nicht hoch genug. Das EU-finanzierte Projekt SYMPHONY will dieses Problem nun lösen und neue, kostengünstige Materialien mit dem passenden Fertigungsverfahren entwickeln, mit denen sich erschwingliche multimodale Lösungen für die Energieernte herstellen lassen.
Ziel
The 21st century has been dominated by an ambient digitalization, a trend that is mirrored by the use of catchwords such as Smart Energy, Smart Homes & Smart Cities and the increasing use of electronics in everyday objects. Current IoT scenarios expect a number of around 75 billion connected devices by 2025, and the powering of these devices by batteries will result in a considerable amount of potentially hazardous waste. The spread of electronic systems in remote locations should thus be accompanied by a change in power generation, making use of dislocated and disordered energy sources. A cost-efficient and environmentally friendly realization of energy harvesting (EH), however, is still a challenge, as the required input of functional material and electronic components in comparison to the energy output is high and often involves lead-based materials, manufacturing methods that consume high amounts of energy and costly assembly steps.
SYMPHONY aims for the development of new materials for low-cost and scalable printing and structuring processes to fabricate multimodal EH solutions based on the ferroelectric polymer P(VDF-TrFE) as well as printed energy storage devices and rectifiers not using rare elements and heavy metals. The hybrid integration of these devices on flexible films with low power harvesting ICs will result in a specific cost below 1€/mW (well below the value for piezoceramic and electrodynamic EH). The reduction of hazardous waste and energy consumption in SYMPHONY starts with material selection and manufacturing, but ultimately unfolds its full potential in the most CO2-relevant application areas: renewable energy generation, room heating/cooling and mobility. The innovative EH concept of SYMPHONY used to power distributed sensor nodes will reduce emissions by 50% increasing the efficiency of wind turbines (Smart Energy), making room heating/cooling 20% more efficient (Smart Home) and supporting the transformation of urban mobility (Smart City).
Wissenschaftliches Gebiet
- engineering and technologycivil engineeringurban engineeringsmart cities
- natural sciencescomputer and information sciencesinternetinternet of things
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systemshome automation
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-NMBP-ST-IND-2019
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
8010 Graz
Österreich