Project description
Foundations of self-adjusting networks
Networks form a critical and costly infrastructure of our digital society. New reconfigurable optical technologies enable self-adjusting networks: networks that can dynamically adapt their topology to the workload they currently serve, improving network performance and efficiency. The EU-funded AdjustNet project will lay the foundations for self-adjusting networks by designing models, metrics, and algorithms for online topology adaption, and validate these through case studies (e.g. datacenter networks). The novel methodology is motivated by an intriguing connection of self-adjusting networks to datastructures and information theory.
Objective
Communication networks have become a critical infrastructure of our digital society. However, with the explosive growth of data-centric applications and the resulting increasing workloads headed for the worlds datacenter networks, todays static and demand-oblivious network architectures are reaching their capacity limits.
The AdjustNet project proposes a radically different perspective, envisioning demand-aware networks which can dynamically adapt their topology to the workload they currently serve. Such self-adjusting networks hence allow to exploit structure in the demand, and thereby reach higher levels of efficiency and performance. The vision of AdjustNet is timely and enabled by recent innovations in optical technologies which allow to flexibly reconfigure the physical network topology.
The goal of AdjustNet is to lay the theoretical foundations for self-adjusting networks. We will identify metrics that serve as yardstick of what can and cannot be achieved in a self-adjusting network for a given demand, devise algorithms for online adaption, and validate our framework through case studies. Our novel methodology is motivated by an intriguing connection of self-adjusting networks to known datastructures and to information theory.
AdjustNet comes with significant challenges since, similar to self-driving cars, self-adjusting networks require human network operators to give away control, and since more autonomous network operations may lead to instabilities. AdjustNet will overcome these risks and achieve its objectives by pursuing a rigorous approach, devising a theoretical well-founded framework for self-adjusting networks which come with provable guarantees and incorporate selfprotection mechanisms.
The PI is well-equipped for this project and recently obtained first promising results. As the community is currently re-architecting communication networks, there is a unique opportunity to bridge the gap between theory and practice, and have impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10623 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.