Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Structural multiscale modelling of extrusion-based 3D and 4D printed materials

Descripción del proyecto

Un acercamiento a la tecnología de reproducción de imágenes

El modelado por deposición fundida (MDF) es una tecnología de impresión 3D de uso generalizado que se basa en la extrusión de filamentos termoplásticos que inicialmente solo se utilizaba para la fabricación de prototipos, pero que desde hace poco también se emplea en la fabricación de componentes mecánicos. En lo que respecta a la impresión 4D, esta es una tecnología innovadora que se utiliza para producir estructuras y materiales inteligentes a través de la impresión 3D de materiales con memoria de forma. Sin embargo, sigue sin conocerse bien el comportamiento de los materiales de MDF. El proyecto FDM^2, financiado con fondos europeos, sugiere que los modelos existentes no son capaces de concebir el comportamiento complejo de los materiales de MDF; por esta razón, el proyecto planea ofrecer información clara sobre la mecánica de los materiales de MDF asociados con instrumentos de planificación, análisis y perfeccionamiento de componentes estructurales de MDF.

Objetivo

Fused Deposition Modelling (FDM) is a common 3D printing technology based on the extrusion of thermoplastic filaments. While it was initially used only for prototyping, it is nowadays shifting towards manufacturing of mechanical components. 4D printing is a very novel technology to produce smart materials and structures through 3D printing of shape memory materials. Due to the specific process of FDM, the material obtains a characteristic mesostructure, which can be controlled through the print process. It is well known that mechanical properties like strength and toughness of the printed material significantly differ from those of the filament material and that they depend on the mesostructure. However, a real understanding of the material behaviour and the governing phenomena is still missing. The common modelling approach is to consider it as a composite laminate. In this proposal, I show that such models cannot capture the complex behaviour of FDM materials beyond the linear elastic regime. I argue that it can only be understood by considering nonlinear effects at the mesostructure, which needs to be interpreted as a 3D structure of bonded fibres rather than an anisotropic solid. Based on these observations, I will develop a new theoretical and computational framework, where representative volume elements of the mesostructure are modelled as an arrangement of beams with adhesive bonding and are linked to the macroscale through a multiscale approach. To make such computations feasible, it will be necessary to adopt modelling simplifications and a major challenge will be to find the right level of simplification that still can capture the relevant effects. It will also require fundamental development of novel high-order/low-cost numerical methods. The results of the successful project will be a clear understanding of the mechanics of FDM materials as well as tools for the design, analysis, and optimization of FDM structural components.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

UNIVERSITAET DER BUNDESWEHR MUENCHEN
Aportación neta de la UEn
€ 2 000 000,00
Dirección
WERNER HEISENBERG WEG 39
85579 Neubiberg
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Landkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 000 000,00

Beneficiarios (1)