Project description
Towards advanced brain–computer interfaces
Brain–computer interfaces (BCIs) can bypass the skeletomuscular system, assisting paralysed people in control and communication. However, despite their application in neuromotor rehabilitation, the accuracy of sensory feedback is still highly variable, limiting their use in everyday life. Scientists of the EU-funded BCINET project propose to address this issue through a novel generation of BCIs that do not solely rely on data from selected brain regions but integrate the user’s brain network information. Using a combination of neuroimaging and experimental methods within a modern computational framework, they will study brain dynamics to improve BCI architecture and accuracy. Apart from refining BCIs, the project has the potential to unveil solutions for motor restoration after stroke.
Objective
Human-computer interfaces are increasingly explored to facilitate interaction with the external world. Brain-computer interfaces (BCIs), bypassing the skeletomuscular system, are particularly promising for assisting paralyzed people in control and communication, but also for boosting neuromotor rehabilitation.
Despite their potential, the societal impact of BCIs is dramatically limited by the poor usability in real-life applications. While many solutions have been proposed - from the identification of the best classification algorithm to the type of sensory feedback - the accuracy is still highly variable across subjects and BCIs cannot be used by everyone. Critically, these approaches have implicitly assumed that the user’s intent could be decoded by examining the activity of single brain areas. Today, we know that this is not true as the brain functioning essentially depends on a complex network of interactions between differently specialized areas.
The grand challenge of this project is to develop a novel generation of BCIs that integrate the user’s brain network information for enhancing accuracy and usability. Based on this approach, we will experiment innovative BCI prototypes to restore the lost motor functions in patients suffering from stroke.
This project relies on a unifying framework that analyses and models brain networks by means of analytical tools derived from graph theory and complex systems science. By recruiting diverse neuroimaging and experimental methods, within a modern computational framework, we aim to i) identify new control features for enhancing BCI accuracy, ii) study the brain dynamics of human learning for improving adaptive BCI architectures, and iii) optimize brain stimulation techniques for boosting BCI skill acquisition.
This project can significantly improve BCI usability as well as determining how brain lesions compromise brain functioning and which solutions are most effective to unlock motor restoration after stroke.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine physiotherapy
- medical and health sciences basic medicine neurology stroke
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
78153 Le Chesnay Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.