Descripción del proyecto
Las reacciones químicas de materiales bidimensionales brindan un potencial fascinante para materiales nuevos
Controlar las reacciones químicas entre sólidos bidimensionales a nanoescala abre la puerta al desarrollo de materiales que pueden programarse a nivel atómico. Las posibles aplicaciones incluyen baterías bioinspiradas y sinapsis artificiales para futuros dispositivos electrónicos neuromórficos. Sobre la base del éxito de la tecnología de las fuerzas de Van der Waals, el proyecto financiado con fondos europeos Programmable Matter llevará a cabo reacciones químicas entre planos sólidos cristalinos separados por una distancia de unos pocos angstroms. Mediante el control de diferentes parámetros como la temperatura, los campos eléctricos y magnéticos, la luz, el sonido, la presión y las fuerzas mecánicas, el proyecto logrará un control espacial preciso de las reacciones químicas a nanoescala, lo que fomentará el progreso hacia el desarrollo de la materia programable.
Objetivo
Chemical reactions between solids are fundamental in areas as diverse as catalysis, information storage, pharmaceuticals, electronics manufacturing, advanced ceramics, and solar energy, to name just a few. Controlling the spatial extent of solid-state reactions at the nanoscale will enable development of materials, programmed on an atomic level, which will facilitate many emerging applications like bioinspired smart batteries and artificial synapses for future neuromorphic electronics. However, currently, there are no chemistry methods which allow precise spatial control at the nanoscale, limiting progress towards the programmable matter. Here I propose a completely new way to create novel materials using two-dimensional (2D) chemical reactions at the atomically-defined interfaces between crystalline solids. Usually, reactions between macroscopic solids are hindered as their large dimensions prevent placing them close enough to each other to support chemical transformations. Thus, just a few years ago, the task of placing two atomically flat crystals within angstrom proximity of each other, to initiate chemical interactions between them, was impossible to realise. This situation has changed dramatically with the advent of van der Waals technology - disassembly of various layered crystals into individual atom- or molecule-thick layers followed by a highly-controlled reassembly of these layers into artificial heterostructures. Building on our recent progress in van der Waals technology, I aim to realise interplanar chemical reactions between highly-crystalline solids in precisely controllable conditions using temperature, electric and magnetic fields, light, sound, pressure, and mechanical forces as means of control. Using digital control of 2D chemistry, mechanics, and electronics at the nanoscale, I and my team will develop programmable matter that actively responds to external and internal stimuli by adjusting their properties on an atomic level.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias médicas y de la saludmedicina básicafarmacología y farmaciamedicamento
- ciencias naturalesciencias químicascatálisis
- ingeniería y tecnologíaingeniería de materialescerámica
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
M13 9PL Manchester
Reino Unido