Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Robust, Explainable Deep Networks in Computer Vision

Descripción del proyecto

Ayudar a los ordenadores a ver mejor las cosas

La creación de redes neuronales convolucionales (RNC) —una clase de algoritmos de aprendizaje profundo— ha revolucionado la visión artificial al permitir que los ordenadores «vean» las cosas y reaccionen ante ellas. Sin embargo, estas RNC no han resuelto todos los problemas. Por ejemplo, todavía se necesitan grandes cantidades de datos etiquetados para entrenar a los ordenadores, y esto no es posible en todos los ámbitos de aplicación posibles. Además, la mayoría de las redes profundas de visión artificial son débiles en términos de explicabilidad. En el proyecto RED, financiado con fondos europeos, se trabajará para avanzar en la robustez y explicabilidad de las redes profundas en la visión artificial. Se analizarán diseños de redes estructuradas, métodos probabilísticos y modelos híbridos generativos/discriminatorios. Asimismo, se harán progresos en la investigación sobre cómo evaluar la robustez y los aspectos de explicabilidad a través de conjuntos de datos y métricas dedicadas, considerando los desafíos de la analítica de escenas tridimensionales.

Objetivo

"Deep learning approaches, mostly in the form of convolutional neural networks (CNNs), have taken the field of computer vision by storm. While the progress in recent years has been astounding, it would be dangerous to believe that important problems in computer vision are close to being solved. Many canonical deep networks for vision tasks ranging from image understanding to 3D reconstruction or motion estimation perform incredibly well ""on dataset"", i.e.~in the very setting in which they have been trained. The generalization to novel, related scenarios is still lacking, however. Moreover, large amounts of labeled data are required for training, which are not available in all potential application areas. In addition, the majority of deep networks in computer vision show deficiencies in terms of explainability. That is, the role of network components is often opaque and most deep networks in vision do not output reliable quantifications of the uncertainty of the prediction, limiting the comprehension by users. In this project, we aim to significantly advance deep networks in computer vision toward improved robustness and explainability. To that end, we will investigate structured network architectures, probabilistic methods, and hybrid generative/discriminative models, all with the goal of increasing robustness and gaining explainability. This is accompanied by research on how to assess robustness and aspects of explainability via appropriate datasets and metrics. While we aim to develop a toolbox that is as independent of specific tasks as possible, the work program is grounded in concrete vision problems to monitor progress. We specifically consider the challenges of 3D scene analysis from images and video, including tasks such as panoptic segmentation, 3D reconstruction, and motion estimation. We expect the project to have significant impact in applications of computer vision where robustness is key, data is limited, and user trust is paramount."

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-COG - Consolidator Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2019-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

TECHNISCHE UNIVERSITAT DARMSTADT
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 999 814,00
Dirección
KAROLINENPLATZ 5
64289 DARMSTADT
Alemania

Ver en el mapa

Región
Hessen Darmstadt Darmstadt, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 999 814,00

Beneficiarios (1)

Mi folleto 0 0