Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Robust, Explainable Deep Networks in Computer Vision

Opis projektu

Pomagamy komputerom postrzegać lepiej

Stworzenie konwolucyjnych sieci neuronowych (CNN – klasa algorytmów głębokiego uczenia się) zrewolucjonizowało widzenie komputerowe, dzięki czemu komputery zaczęły „widzieć” rzeczy i reagowanie na nie. Jednak algorytmy CNN nie rozwiązały wszystkich problemów. Przykładowo do szkolenia nadal potrzeba dużej ilości oznaczonych danych, a ich dostarczenie nie jest możliwe we wszystkich potencjalnych obszarach zastosowań. Co więcej, nie potrafimy wyjaśnić większości działań głębokich sieci korzystających z widzenia komputerowego. Finansowany przez UE projekt RED ma służyć opracowaniu narzędzi poprawy niezawodności tych algorytmów i możliwości wyjaśnienia działania głębokich sieci widzenia komputerowego. Zbadane zostaną zestrukturyzowane projekty sieci, metody probabilistyczne i hybrydowe modele generacyjne oraz dyskryminacyjne. Wyniki prac przyczynią się również do postępu w badaniach nad sposobem oceny niezawodności i aspektów wyjaśnialności poprzez dedykowane zestawy danych i metryk, z uwzględnieniem wyzwań związanych z analizą scen 3D.

Cel

"Deep learning approaches, mostly in the form of convolutional neural networks (CNNs), have taken the field of computer vision by storm. While the progress in recent years has been astounding, it would be dangerous to believe that important problems in computer vision are close to being solved. Many canonical deep networks for vision tasks ranging from image understanding to 3D reconstruction or motion estimation perform incredibly well ""on dataset"", i.e.~in the very setting in which they have been trained. The generalization to novel, related scenarios is still lacking, however. Moreover, large amounts of labeled data are required for training, which are not available in all potential application areas. In addition, the majority of deep networks in computer vision show deficiencies in terms of explainability. That is, the role of network components is often opaque and most deep networks in vision do not output reliable quantifications of the uncertainty of the prediction, limiting the comprehension by users. In this project, we aim to significantly advance deep networks in computer vision toward improved robustness and explainability. To that end, we will investigate structured network architectures, probabilistic methods, and hybrid generative/discriminative models, all with the goal of increasing robustness and gaining explainability. This is accompanied by research on how to assess robustness and aspects of explainability via appropriate datasets and metrics. While we aim to develop a toolbox that is as independent of specific tasks as possible, the work program is grounded in concrete vision problems to monitor progress. We specifically consider the challenges of 3D scene analysis from images and video, including tasks such as panoptic segmentation, 3D reconstruction, and motion estimation. We expect the project to have significant impact in applications of computer vision where robustness is key, data is limited, and user trust is paramount."

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2019-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

TECHNISCHE UNIVERSITAT DARMSTADT
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 999 814,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 999 814,00

Beneficjenci (1)

Moja broszura 0 0