Project description
Community outreach, microbial style
Life on Earth is likely to have originated from single-celled organisms that appeared three billion years ago in our first oceans. It took more than two billion more years for an eruption of more complex life forms that, to this day, rely strongly on microbial communities for the function of the ecosystems in which they live. These communities offer unprecedented potential to produce natural ingredients we can harness for sustainable applications in medicine, energy, environmental science and more. However, understanding complex interspecies interactions is a tremendous challenge. The EU-funded ModEM project is beginning to untangle the interconnections through the application of advanced techniques in modelling, genetics, omics and more. Enhanced understanding could help build microbial communities that enhance the secretion of metabolites that help them thrive.
Objective
Microbial communities occupy practically all habitats on Earth, from ocean deeps to the human gut, and are pivotal to the ecosystem function. They also hold a vast biotechnological potential to realize functionalities typically beyond the reach of single species, e.g. valorisation of complex resources. Rational design and modulation of communities can thus help addressing outstanding challenges in health and bio-sustainability. Yet, this remains difficult due to the complexity of interspecies interactions. Towards tackling this, I plan to combine modelling, genetics, omics and laboratory evolution to study complex microbial communities with a focus on metabolic cross-feeding. Kefir, a natural milk-fermenting community, and stable assemblies of human gut bacteria will be used as two model systems. Both systems have recently been pioneered by my lab and represent complexity relevant for real-world applications. We will first investigate the genetic and environmental factors driving metabolite secretion using high-throughput screening of natural isolates and genetic libraries. Large-scale pairwise interaction mapping and self-establishing stable sub-communities will be used to unravel higher-order interactions and to discover the principles of community assembly. Laboratory evolution will then be used to assess community stability as well as to decipher interaction mechanisms through multi-omics analyses. The experimental data on species metabolism and interspecies interactions will be used to build hybrid metabolic-ecological models for predicting effects of perturbations like species introduction and nutrient change. The applicability will be demonstrated through stable introduction of probiotic species in personalized gut bacterial communities, and by developing vitamin overproducing milk fermenting communities. The results will have fundamental implications for modulating microbial communities relevant for environment, health and biotechnology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.