Project description
Untethered DNA molecules leave ends free for manipulation and study
Double-strand breaks (DSBs) in chromosomes are one of the many types of DNA damage that can occur via normal cellular processes or environmental exposures. DSBs can lead to cell death if left unrepaired; if not repaired properly, they can cause deletions, translocations and fusions in the DNA. By its nature, a DSB is located at the end of a DNA strand, rendering it difficult to study with conventional single DNA molecule methods that involve anchoring the DNA at its ends to hold it in place. The EU-funded nanoDNArepair project is creating a nanofluidics platform to study DNA repair at a single-molecule level. After trapping the DNA within a nanofluidic channel, proteins can be added or removed through a slit perpendicular to the length of the channel. The pioneering setup will enable access to unprecedented spatio-temporal details of DNA repair processes on genomic length DNA on single DNA molecules.
Objective
DNA-protein interactions are at the core of the function of every human cell. Single DNA molecule methods have revolutionized our understanding of such interactions. A vast majority of these methods are based on attaching the DNA, at one or both ends, to a bead or a surface. This gives ultimate control of the positioning of the DNA molecules and forces that can be applied to them but makes it difficult to investigate interactions with DNA ends, especially when more than one single DNA molecule is involved. Such interactions are however of fundamental importance, not the least in the repair of DNA double-strand breaks (DSBs), the most serious damage to our genetic material. In nanoDNArepair I will develop and use a method that allows analysis of DNA-protein interactions on large, single DNA molecules for DNA freely suspended in solution. The method is based on entropically trapping and stretching genomic length DNA molecules in nanofluidic channels and using an orthogonal nanoslit to expose the trapped DNA to proteins of interest. In contrast to all existing nanofluidic devices, the novel device allows active addition (or removal) of proteins to (from) the confined DNA and positioning of two or more DNA molecules in close proximity. We will use the device to study the main repair machinery for DSBs, non-homologous end-joining (NHEJ). In NHEJ a machinery of proteins finds the broken ends, protects them, holds them close and ligate the break. These steps are difficult to study with traditional single DNA molecule techniques, but perfectly suited for the nanofluidic device. The single molecule analysis can reveal stoichiometry, kinetics and dynamics of these processes, as well as identify important sub-populations, which is crucial for understanding the process. The outcome of the project will, in addition to the device, be improved understanding of genetic diseases, including cancer and strategies for development of novel drugs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.