Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Online Class Imbalance Learning for Fault Diagnosis of Critical Infrastructure Systems

Description du projet

Une nouvelle façon de détecter les défauts d’infrastructures critiques

Les infrastructures critiques sont les fondations sur lesquelles les communautés sont construites. Elles fournissent des biens et des services indispensables. Les défaillances – défauts et dysfonctionnements – d’une infrastructure critique peuvent entraîner des pertes économiques considérables. C’est pourquoi une détection rapide est vitale. Le projet FAULT-LEARNING, financé par l’UE, va concevoir et développer un moteur de diagnostic des défauts basé sur l’apprentissage en ligne pour surveiller et analyser les données arrivant en temps réel en provenance des systèmes d’infrastructures critiques. Les chercheurs utiliseront des capacités d’apprentissage en ligne et tenteront de remédier au déséquilibre des classes, lequel constitue un défi majeur pour les systèmes d’apprentissage, car les défauts ne sont pas des événements à forte probabilité. Le projet mettra également au point un prototype pour le diagnostic des défauts de capteurs qui sera évalué sur un banc d’essai physique «Smart Buildings», afin de permettre des essais efficaces dans des conditions réalistes.

Objectif

The aim of the project is to design and develop an online learning-based fault diagnosis engine with adaptation capabilities. This engine will monitor and analyse data arriving in real time from critical infrastructure (CI) systems, to accurately detect a potential fault and effectively isolate and identify its exact location. Modern society relies heavily on the availability and smooth operation of CI systems, such as electrical power systems, water distribution systems and telecommunication networks. In such large-scale, complex engineering systems when a failure occurs due to faults, it can have severe societal, health and economic consequences. The sequential arrival of data in CI systems calls for a fault diagnosis engine with adaptive behaviour to achieve and maintain optimal performance. However, the vast majority of existing work falls short on this requirement. This project will incorporate online learning capabilities to achieve adaptability and will also address class imbalance, a major challenge for learning systems, arising from the fact that faults are low probability events. Online class imbalance learning (OCIL) is an emerging research topic focusing on the combined challenges of online learning and class imbalance. We will shed light on supervised OCIL as very few methods currently deal with this problem and address for the first time the unsupervised and semi-supervised OCIL problems. The proposed algorithms will be evaluated in realistic fault diagnosis datasets from industrial partners and in an advanced Smart Buildings simulator allowing us to run sensor fault scenarios in large-scale multi-zone buildings. Furthermore, a prototype on sensor fault diagnosis will be delivered that will be evaluated on a physical Smart Buildings testbed to enable its efficient testing under realistic conditions. Overall, this novel and interdisciplinary project will provide invaluable insights on incorporating learning capabilities in CI systems fault diagnosis.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-WF-2018-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITY OF CYPRUS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 157 941,12
Adresse
AVENUE PANEPISTIMIOU 2109 AGLANTZI
1678 Nicosia
Chypre

Voir sur la carte

Région
Κύπρος Κύπρος Κύπρος
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 157 941,12
Mon livret 0 0