Project description
Increasing safety of space assets
Monitoring space weather events is crucial. The EU-funded SafeSpace project aims to advance space weather nowcasting and forecasting capabilities, contributing significantly to the safety of space assets through the transition of powerful tools from research to operations. This will be achieved through the synergy of five well-established space weather models. SafeSpace hopes to improve radiation belt, culminating in a prototype early warning system for detrimental space weather events, integrating information all the way from the Sun to the inner magnetosphere. Working, also, with a major European space company, SafeSpace, hopes to define indicators of particle radiation of use to space industry and spacecraft operators.
Objective
The SafeSpace project aims at advancing space weather nowcasting and forecasting capabilities and, consequently, at contributing to the safety of space assets through the transition of powerful tools from research to operations (R2O). This will be achieved through the synergy of five well-established space weather models (CNRS/CDPP solar disturbance propagation tool, KULeuven EUHFORIA CME evolution model, ONERA Neural Network tool, IASB plasmasphere model and ONERA Salammbô radiation belts code), which cover the whole Sun – interplanetary space – Earth’s magnetosphere chain. The combined use of these models will enable the delivery of a sophisticated model of the Van Allen electron belt and of a prototype space weather service of tailored particle radiation indicators. Moreover, it will enable forecast capabilities with a target lead time of 2 to 4 days, which is a tremendous advance from current forecasts, which are limited to lead times of a few hours. SafeSpace will improve radiation belt modelling through the incorporation into the Salammbô model of magnetospheric processes and parameters of critical importance to radiation belt dynamics. Furthermore, solar and interplanetary conditions will be used as initial conditions to drive the advanced radiation belt model and to provide the link to the solar origin and the interplanetary drivers of space weather. This approach will culminate in a prototype early warning system for detrimental space weather events, integrating information all the way from the Sun to the inner magnetosphere. With a major European space company, Thales Alenia Space (TAS-E), as a Partner in SafeSpace, we will define indicators of particle radiation of use to space industry and spacecraft operators. Indicator values will be generated by the advanced radiation belt model and the performance of the prototype service will be evaluated by TAS-E and by other stakeholders, who will be selected in collaboration with the External Advisory Panel.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.4. - Enabling European research in support of international space partnerships
See all projects funded under this programme -
H2020-EU.2.1.6.3. - Enabling exploitation of space data
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SPACE-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10 561 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.