Project description
Graph-based representation of the genome sequence data
Modern sequencing technology produces genome sequence data on a gigantic scale reaching into exabytes. The emerging urgent question is how these volumes of data could be arranged and analysed in a computationally efficient and biomedically meaningful manner. This EU-funded project is going to explore graph-based representation of large genome datasets and determine their advantages over traditional sequence-based presentation of pan-genomic data. Genomes that are evolutionarily close vary only a little and graph-based pan-genomic representation allows to remove redundancies while highlighting important differences. The research is going to demonstrate the advantage of the shift to the new data representation approach using comparative analysis, compression, integration and exploitation of genome data as the fundamental points.
Objective
Genomes are strings over the letters A,C,G,T, which represent nucleotides, the building blocks of DNA. In view of ultra-large amounts of genome sequence data emerging from ever more and technologically rapidly advancing genome sequencing devices—in the meantime, amounts of sequencing data accrued are reaching into the exabyte scale—the driving, urgent question is: how can we arrange and analyze these data masses in a formally rigorous, computationally efficient and biomedically rewarding manner?
Graph based data structures have been pointed out to have disruptive benefits over traditional sequence based structures when representing pan-genomes, sufficiently large, evolutionarily coherent collections of genomes. This idea has its immediate justification in the laws of genetics: evolutionarily closely related genomes vary only in relatively little amounts of letters, while sharing the majority of their sequence content. Graph-based pan-genome representations that allow to remove redundancies without having to discard individual differences, make utmost sense. In this project, we will put this shift of paradigms—from sequence to graph based representations of genomes—into full effect. As a result, we can expect a wealth of practically relevant advantages, among which arrangement, analysis, compression, integration and exploitation of genome data are the most fundamental points. In addition, we will also open up a significant source of inspiration for computer science itself.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences genetics nucleotides
- natural sciences biological sciences genetics genomes
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-RISE-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20126 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.