Project description
Flexible, reversible, solid oxide fuel cell generating both electricity and hydrogen
Solid oxide fuel cells (SOFCs) present an efficient, environmentally friendly alternative to converting variable electricity from renewables in green hydrogen. They can also work in reverse, providing power as a hydrogen fuel cell. The EU-funded SWITCH project aims to develop fuel cell technology that will provide green and secured production of hydrogen, heat and power. The core of the system will comprise three elements: a reversible solid oxide module based on anode-supported electrolytes; a fuel processing unit that can manage steam generation and methane-reforming reactions at high efficiency; and a purification unit to guarantee highly pure hydrogen in compliance with the main automotive standards. The goal is to demonstrate a 25-kilowatt SOFC system operating in an industrial environment for 5 000 hours.
Objective
Solid Oxide Cells are efficient ways to convert variable electricity from renewables in green hydrogen. At the same time, they can be used in a reversible mode to enable the use of other sources (e.g. methane, bio-methane) to match a variable energy production with continuous and guaranteed production of hydrogen for contracted end uses. Switch will focus on the development of this specific solution and realize a mostly green and always secured production of hydrogen, heat and power. Core of the system is a reversible Solid Oxide module based on anode supported electrolyte, supported by an advanced fuel processing unit able to manage steam generation and methane reforming reactions at high efficiency and a purification unit to guarantee highly pure hydrogen in compliance with the main industrial and automotive standards. SWITCH project focuses on the demonstration of a 25kW (SOFC)/75kW (SOEC) system operating in a relevant industrial environment for at least 5000 hrs. Part of the activities will be focused on the issue of cost competitiveness and environmental impact, with the target of the hydrogen price lower than 5 €/kg. The basic solution will be designed to be up scalable to bigger sizes and thus reaching target applications in other different sectors such as industrial, residential and grid services. The modularity, low transient times, an integrated gas treatment unit and different modules combined in between SOFC and SOE mode will set a solution able to modulate between different sources and a flexible production of hydrogen, heat and power, with specific use cases considered.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences organic chemistry aliphatic compounds
- engineering and technology environmental engineering energy and fuels fuel cells
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.8.2. - Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-FCH-2019-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38122 Trento
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.