Skip to main content
European Commission logo print header

Highly efficient and trustworthy electronics, components and systems for the next generation energy supply infrastructure

Project description

Next generation smart grid to reduce greenhouse gas emissions and grid peak power

The high-power requirements of ultra-fast charging stations give rise to special challenges when designing smart charging infrastructure. In support of Europe’s 2030 climate targets, the EU-funded PROGRESSUS project aims to introduce a next-generation smart grid demonstrated by the application example of a smart charging infrastructure integrating seamlessly into current smart-grid architecture concepts. To do so, it will research new efficient high-power converters that support bidirectional power flow. New DC microgrid management strategies for energy efficiency and service provision that consider renewable energy sources, storage and flexible loads will be investigated. It will also explore novel sensor types, inexpensive high-bandwidth communication technologies and security measures based on hardware security modules and blockchain technology to protect communication and services. The project’s solution will promote a more environmentally friendly and efficient next-generation energy supply infrastructure.


Progressus supports the European climate targets for 2030 by proposing a next generation smart grid, demonstrated by the application example “smart charging infrastructure” that integrates seamlessly into the already existing concepts of smart-grid architectures keeping additional investments minimal. The expected high-power requirements for ultra fast charging stations lead to special challenges for designing and establishing an intelligent charge-infrastructure. As emission free traffic concepts are a nascent economic topic also the efficient use of charging infrastructure is still in its infancy. Thus, novel sensor types, hardware security modules, inexpensive high bandwidth technologies and block-chain technology as part of an independent, extendable charging energy-management and customer platform are researched for a charging-station energy-microgrid. Research of new efficient high-power voltage converters, which support bidirectional power flow and provide a new type of highly economical charging stations with connected storage and metering platform to locally monitor the grid state complements the activities. The stations are intended to exploit the grid infrastructure via broadband power-line as communication medium, removing the need for costly civil engineering activities and supplying information to the energy management solutions for utilization optimization. Smart-Contracts via block-chain offer a distributed framework for the proposed energy management and services platform. Furthermore hardware security hardens the concept against direct physical attacks such as infiltration of the network by gaining access to the encryption key material even when a charging station is compromised. Progressus solutions are estimated to enable a carbon dioxide saving of 800.000 tons per year for only Germany, will secure the competitiveness of European industry and research by extending the system know how and will thus safeguard employment and production in Europe.

Call for proposal


See other projects for this call

Sub call



Net EU contribution
€ 1 012 269,00
Am campeon 1-15
85579 Neubiberg

See on map

Bayern Oberbayern München, Landkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Other funding
€ 3 036 807,25

Participants (27)