Descripción del proyecto
Medir la contaminación atmosférica con semiconductores de carburo de silicio
La contaminación atmosférica sigue teniendo un impacto significativo en nuestra salud. Los niveles altos de dióxido de nitrógeno (NO2) y partículas en suspensión están considerados los mayores riesgos medioambientales para la salud en las zonas urbanas. Esto hace que la supervisión de la calidad del aire sea más importante que nunca para concienciar sobre la calidad del aire y sus estrategias. El proyecto SiC-MOSFET, financiado con fondos europeos, está preparando la comercialización internacional de su tecnología de sensor de gas. Desarrollado después de veinte años de investigación, se basa en el uso de carburo de silicio (SiC) para semiconductores. Comparado con otros sensores que hay en el mercado en la actualidad, los sensores SenSiC ofrecen plena funcionalidad a temperaturas muy elevadas y en entornos adversos (desde sistemas de calefacción doméstica hasta motores de coches), y es excepcionalmente sensible en concentraciones de gas muy bajas.
Objetivo
Air pollution remains one of the biggest environmental risks to public health in Europe and causes an estimated 422 000 premature deaths per year. Nevertheless, many European countries are still failing to meet air quality standards. Poor human health, heart and lung diseases, reduced labour productivity are all unnecessary consequences that result in additional expenditures for health, environment and penalty payments for excess emissions. SenSIC attempts to address these challenges by offering its gas sensors for harsh environments.
SenSiC’s gas sensor technology has been developed over 20 years of research and is based on the use of Silicon Carbide (SiC) for semiconductors. Unlike existing sensors on the market, the SenSiC sensors offer full functionality in very high temperatures (up to 650C) and harsh environments such as domestic heating systems, process industry, automotive and marine engines etc. Because the sensor semiconductor chip is placed directly in the exhaust gases (in situ), there is no extra cooling delay as with other sensors, and therefore the response is quick. A single sensor unit can detect multiple gases as well as pressure.
Our technology has exceptional sensitivity in very low gas concentrations with a proven long term performance. By measuring gas concentrations, e.g. for NH3, NOx, O2 and CO, it is possible to control the combustion and by that reduce harmful emissions. This leads to a cleaner environment and higher quality of the air we all breath.
The key objective of our project is to transform an initial business plan into a robust strategy for international commercialization and to prepare for a Phase 2 development. With this objective in mind, our Phase 1 project will focus on a more precise market evaluation and developing a plan for future demonstration activities, including reference user and application selection. Through the market part of the feasibility assessment, we will further optimize our go-to-market strategy
Ámbito científico
- engineering and technologymechanical engineeringthermodynamic engineering
- social scienceseconomics and businesseconomicsproduction economicsproductivity
- engineering and technologyenvironmental engineeringair pollution engineering
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEInst-2018-2020-1
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
164 40 KISTA
Suecia
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.