Project description
Indoor comfort systems move from satisfactory to totally hot
Nearly everyone working in a modern shared-space environment, or even living with others, has experienced the thermostat war – some people are freezing while others are warm. Our perception of temperature and our thermal comfort are dependent on more than a static heat balance between the environment and our skin or our core temperature. After all, the environment is the same for everyone, as is the core temperature for all practical purposes. Understanding the factors and processes determining our perceived thermal comfort is emerging as a critical consideration in developing energy-efficient buildings that simultaneously keep people happy. The EU-funded comfortA project is investigating the psychophysiological mechanisms behind dynamic thermal comfort to develop better predictive models, resulting in the design of indoor comfort systems that do much more than comfort.
Objective
Much of the effort in thermal comfort research has been given to understand which environmental and personal steady-state conditions lead to thermal comfort. This focus on static and isothermal states has been translated in the prescription of fixed set-point temperatures in buildings. Now, a paradigm shift in the way energy is generated and used calls for a complete rethink of the way buildings are designed and operated. In contrast to a fixed set-point driven design, the implementation of set-point modulations in buildings allows to shift and/or shave heating and cooling peak loads and contributes to boost buildings’ flexibility. However, a scarce knowledge of the effect of dynamic indoor conditions on occupants’ thermal comfort still prevents the design and adoption of comfortable temperature fluctuations. While big advancements have been made in modelling the physics of the heat and mass transfer into and out of the human body (i.e. the passive system of multi-segmental dynamic models of human thermoregulation), still very little is known on how the brain processes and integrates sensory inputs to create thermal perceptions, particularly during dynamic indoor conditions. The proposed research project aims to address this knowledge deficit by shedding new light on the psycho-physiological mechanisms driving the dynamic thermal perception, with a particular focus on the phenomena of thermal alliesthesia and thermal adaptation, and by creating a more accurate predictive thermal comfort model, which is able to better account for these two phenomena. This project will provide the research community with a new robust set of empirical data, novel knowledge and a novel physiological-based dynamic thermal comfort model, which has the potential to revolutionize the way professionals and researchers design and operate indoor comfort systems: not just aiming for thermal neutrality but striving for thermal delight.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
17031 La Rochelle
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.