CORDIS - Résultats de la recherche de l’UE
CORDIS

Photon-photon and spin-spin Entanglement using Diamond-based impurity Elements: Silicon, Tin And Lead

Description du projet

Les défauts du diamant: un élément essentiel des réseaux quantiques

Soutenus par les lois de la physique quantique, les réseaux quantiques laissent présager des capacités révolutionnaires dans le traitement de l’information et l’avènement des communications sécurisées. L’élément matériel clé d’un réseau quantique est le nœud qui communique avec les autres nœuds en échangeant des «qubits volants». Ces qubits mobiles se déplacent le long d’une chaîne de processeurs quantiques qui stockent les états des qubits. La propriété de spin quantique des centres azote-lacune dans les diamants est un candidat prometteur pour la mise en œuvre des qubits volants. Le projet PEDESTAL, financé par l’UE, s’attaquera aux problèmes fondamentaux qui empêchent la mise à l’échelle des dispositifs quantiques basés sur le diamant. Le projet créera un prototype de matériel de nœud quantique basé sur les défauts du groupe IV du diamant, capable de soutenir un réseau quantique polyvalent qui met en œuvre simultanément communications et calcul quantiques.

Objectif

Quantum technologies promise revolutionary capabilities in processing information and transmitting with security over a network certified by the principles of quantum physics. The key hardware element of a quantum network is the ‘node’, where a stationary qubit cluster perform primitive processes and communicate with other nodes by exchanging flying qubits. The interfacing between the stationary qubit cluster and the flying qubits is realised by a special ‘broker qubit’. Today, the most competitive candidates for flying and stationary qubits are photons and diamond spins, respectively, and this opportunity is being pursued worldwide. A specific emitter in diamond, the Nitrogen Vacancy (NV), has enabled landmark demonstrations of basic quantum building blocks, but faces fundamental challenges on reaching the optical qualities required to scale up. PEDESTAL offers an efficiency boost to the NV while building on key advances in diamond technology. Our goal is to create a quantum node hardware prototype with characteristics required to sustain a multi-purpose quantum network capable of implementing simultaneous quantum communications and computing. PEDESTAL will develop a demonstrator quantum node based on diamond group-4 spins, which offer specifications outperforming others. Benchmarking against the known silicon-vacancy (SiV) centre, our workhorse will be the tin-vacancy (SnV) centre, which we have shown to have outstanding qualities satisfying the requirements for a quantum node. In parallel, we will develop to maturity the less-known but highly promising lead-vacancy (PbV) centre which can operate with more feasible conditions and develop a novel technique to control spins. Our objectives include creating multi-spin and multi-photon entangled states as resource and will complete its key objectives with the demonstration of distributed three-spin entanglement, culminating in the experimental demonstration of a high-fidelity, high-bandwidth multi-node quantum network

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 2 478 734,00
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 478 734,00

Bénéficiaires (1)