Project description
Designer enzymes could make the 'unnatural' the natural choice for greener chemistry
Enzymes are nature's catalysts, speeding up the rate of a reaction without being consumed by it, and thus they can be used again and again. Most enzymes are proteins, sequences of amino acids that form functional (or 'meaningful') compounds, in the same way that a sequence of letters forms words and sentences. Small sequences of amino acids in the enzyme form the binding and catalytic sites, essentially holding the reactant(s) captive so that the reaction can be catalysed. The EU-funded DENZUAC project is out to introduce 'unnatural' amino acids into naturally occurring proteins to unlock a wealth of catalytic reactions currently inaccessible with natural 'green' chemistry. The designer enzymes could help make biocatalysis significantly more attractive as a route to sustainable chemical reactions for a variety of applications of importance to society in fields ranging from energy and medicine to nanotechnology.
Objective
Biocatalysis is a key component of the transition towards a more sustainable and greener chemistry. Surprisingly, natural enzymes use only a relatively small section of reaction space, that is, only limited number of reaction classes. This in marked contrast to the vast reaction space available to the synthetic chemist. Therefore, it is highly desirable to have enzymes available for the catalysis of these abiological reactions.
With the advent of robust expanded genetic code methodologies, it is now feasible to introduce a wide variety of unnatural amino acids into proteins. We envision that the time has come to use this breakthrough technology to create enzymes that contain abiological reactive groups as catalytic residue, for the catalysis of reactions that are not possible using canonical amino acids only.
The global aim of this project is the creation and application of designer enzymes with genetically encoded unnatural amino acids as catalytic residue for novel and new-to-nature catalysis.
The following research objectives are key to achieving the overall aim:
1. Achieving incorporation of unnatural amino acids containing organocatalytic side chains in proteins.
2. Creation of a library of novel designer enzymes containing unnatural amino acids as catalytic residue.
3. Application of these designer enzymes in catalysis of important reactions that have no equivalent in nature.
4. Directed evolution of designer enzymes featuring unnatural amino acids as catalytic residue.
5. Application of designer enzymes containing UAAs as catalytic residue in biocatalytic cascades.
This highly ambitious project combines frontier chemical and biochemical research and will deliver completely new classes of enzymes that can access new and previously unexplored parts of biocatalytic reaction space. In this way, this project will contribute to achieving the important societal goal of achieving greener and more sustainable approaches to chemical synthesis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis biocatalysis
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9712CP Groningen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.