Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Light-Field Controlled Molecular Reactions

Descripción del proyecto

Control de las reacciones químicas a través de luz láser

Una de las investigaciones más interesantes de los químicos es cómo usar las herramientas de la física para controlar reacciones químicas a escala molecular. El proyecto LFC-MORE, financiado con fondos europeos, planea demostrar un control experimental sobre una reacción química a través de la fotocatálisis. Esta técnica relativamente nueva emplea un láser pulsado de alta potencia que genera un campo eléctrico fuerte que interactúa con el dipolo que induce en una molécula. Este efecto Stark dinámico permite a los científicos alterar los niveles de energía y las superficies de energía potencial de la molécula que se estudia y, así, controlar la química del sistema. Al disponer de una prueba de principio gracias a la experimentación con una molécula pequeña, el proyecto utilizará la técnica para controlar las intersecciones cónicas en moléculas bioquímicas grandes y para crear interruptores moleculares activados por luz.

Objetivo

It is a long-held dream of physical chemists to not only study, but also fully control chemical reactions. The research aim of this project is to control such reactions using the photon catalysis method. This technique uses a focused, high-power, non-resonant pulsed laser to create a high electric field. This field can interact with the dipole it induces in a molecule. With this so-called dynamic Stark effect, we can alter energy levels and potential energy surfaces of the molecule under study and thereby control the chemistry in the system.
Our first goal is to apply this relatively new and state-of-the-art technique to control the chemistry in a small benchmark molecule. This will serve as a proof-of-principle experiment and give us a better understanding of the technique and the molecular mechanisms it affects. Afterwards, our aim is to control conical intersections in relatively large biochemically relevant molecules and to create light-field assisted molecular switches.
The experiments will be conducted in a molecular-beam machine. Three lasers will interact with the molecules. The first one will provide the high electric field to control the chemistry, the second laser will excite the molecules and thereby start the chemical reaction, and the third one will ionize the reaction products. The resulting ions and electrons will be recorded using the velocity map imaging technique. We will use state-of-the-art combinations of detection methods to elucidate the controlled chemical reactions in a very high level of detail.
The photon catalysis method has the potential to become a relatively easy to implement and general technique that could advance many experiments from the level of understanding to the level of controlling molecular processes. It allows us to manipulate properties of matter at the molecular level and it could become an important tool in the fields of quantum information, molecular nanotechnology, and photopharmacology, for instance.

Coordinador

STICHTING RADBOUD UNIVERSITEIT
Aportación neta de la UEn
€ 175 572,48
Dirección
HOUTLAAN 4
6525 XZ Nijmegen
Países Bajos

Ver en el mapa

Región
Oost-Nederland Gelderland Arnhem/Nijmegen
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 175 572,48