Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Localized catalytic hotspot detection, manipulation, and creation for Energy Innovations

Project description

Hydrogen, a sustainable alternative for chemical energy conversion and storage

Hydrogen is key in the sector of innovation as regards chemical energy conversion and storage since it can be used as a sustainable alternative. The electrochemical hydrogen evolution reaction (HER) can be used to produce hydrogen. However, new sustainable materials need to be developed to substitute Pt-based HER catalysts. Pinpointing the electrochemical activity of individual surface characteristics to identify catalytic hotspots remains a major challenge. Also, the selective creation of catalytic hotspots up to the construction of highly efficient nanocomposite structures represents another issue. The EU-funded LoCatSpot project aims to apply localised electrochemistry to provide clear solutions for both challenges and to pave the way for new advanced 2D materials for further energy related innovations.

Objective

Throughout the European Union, questions about the sustainability of our lifestyles have become a strong motivation for innovations in chemical energy conversion and storage. Hydrogen is expected to play the key role in future developments. The electrochemical hydrogen evolution reaction (HER) is an important and future-oriented way of producing hydrogen. Tremendous efforts have been made to develop new materials as substitutes for Pt-based HER catalysts. Two dimensional transition metal dichalcogenide (TMD) are promising replacements due to their admirable catalytic activity and low cost. However, the expectations in TMDs as alternative HER catalysts have not yet been fulfilled.
It is well known that local variations in the chemical composition and morphological characteristics (planes, edges) influence catalytic effects and thus change electrochemical activity. The development of advanced nanocomposites of two or more TMDs is therefore a fascinating and targeted approach which faces several challenges. One major challenge, especially for complex materials where modifications can cause multiple changes, is pinpointing the electrochemical activity to individual surface characteristics to identify catalytic hotspots. Another big challenge is the selective creation of catalytic hotspots up to the construction of well divined and highly efficient nanocomposite structures. The scanning electrochemical microscope enables the correlation of electrochemical activity to surface characteristics as well as the template-free chemical structuring of surfaces. In particular, the direct read out after induced modifications will deliver unprecedently detailed information about catalytic hotspots. This project aims to apply localized electrochemistry to provide clear solutions for both challenges and to finally path the way to new advanced 2D materials for further energy related innovations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

VYSOKE UCENI TECHNICKE V BRNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 144 980,64
Address
ANTONINSKA 548/1
602 00 BRNO STRED
Czechia

See on map

Region
Česko Jihovýchod Jihomoravský kraj
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 144 980,64
My booklet 0 0