Project description
Improving climate prediction
Secondary organic aerosol (SOA) constitutes the main type of particulate matter found in the troposphere and is generated from the organic transformation of various compounds. The experimental characterisation and theoretical description of SOA is technically challenging given the complex reactions implicated in its formation. More importantly, since it plays a central role in air quality, atmospheric chemistry and climate, it is essential to understand how SOA components diffuse within particles. In this context, the EU-funded MICROSCOPE project will combine innovative instrumentation as well as experimental and modelling work to measure diffusion coefficients of organic molecules within SOA under tropospheric-relevant temperatures. The project's findings are expected to improve our ability to predict air quality and future climate.
Objective
Molecular diffusion of organics within secondary organic aerosol (SOA), a main class of tropospheric particles, controls predictions of particle mass, size, mixing state, and cloud formation properties, thus SOA’s role for air quality, atmospheric chemistry and climate. Despite that, measurements of diffusion coefficients of organics in SOA at low, tropospheric relevant temperatures (T) are largely missing.
The objectives of MICROSCOPE are to directly measure diffusion coefficients of organic molecules in SOA particles at T < 290 K, improve parametrizations used to estimate diffusion, test predictions of diffusivity in atmospheric models and assess the impacts on particle chemistry, by the combination of development of innovative instrumentation, experimental and modelling work.
Measuring diffusion coefficients as a function of water activity (aw) and temperature, will be achieved by developing a new flow cell with simultaneous and in-situ T and aw-control for rectangular area fluorescence recovery after photobleaching measurements. The chemical composition of the SOA samples will be determined using high-resolution mass spectrometry, with the goal to improve existing parametrizations used to estimate the diffusion of organics in SOA and derive new ones that directly relate chemical composition to diffusion coefficients. The new T and aw-dependent parametrization will be used along with model output to verify if tropospheric mixing times of organics in SOA particles are < 1 h. Finally, the impact of diffusion of organics on SOA particle reactivity and chemistry will be determined through measuring the degradation rates of peroxides within SOA particles, using aerosol flow tube and X-ray microscopy experiments.
By combining the expertise of two research groups in North America and Europe, state-of-the-art laboratory facilities, and small and large-scale instrumentation, both the scientific as well as the training goals of this action will be reached.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- engineering and technology environmental engineering air pollution engineering
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5232 VILLIGEN PSI
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.