Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Artificial microtubules based on switchable cyclic peptides

Description du projet

De nouveaux matériaux proches du vivant

Les microtubules font partie du cytosquelette de la cellule et démontrent une capacité à s’assembler et à se désassembler en fonction des besoins de la cellule. La science des matériaux a essayé d’imiter la capacité d’auto-assemblage des microtubules en concevant des polymères supramoléculaires artificiels, qui ont toutefois pris du retard en termes de propriétés mécaniques. Pour y remédier, le projet CYCLOTUBES, financé par l’UE, utilise des peptides cycliques qui peuvent passer de l’état assemblé à l’état désassemblé grâce à des produits chimiques ou des enzymes. La performance de ces microtubules artificiels sera contrôlée dans un environnement cellulaire à l’aide de la microscopie et pourrait déboucher sur des matériaux innovants aux propriétés mécaniques inédites.

Objectif

Naturally occurring living materials, for e.g. the cell cytoskeleton, consist of intricate supramolecular polymers whose self-assembly is controlled by high energy molecules such as guanosine triphosphate GTP. MiNaturally occurring living materials, such as the cell cytoskeleton, consist of intricate supramolecular polymers whose self-assembly is controlled by high energy molecules such as guanosine triphosphate GTP. Microtubules for example, are incredibly strong, but because they are chemically fueled by GTP, they can be built up or broken down at specific times and locations inside the cell. The tubules are in so-called non-equilibrium steady states, and are kept away from the thermodynamic equilibrium for extended periods of time. In the recent years, artificial supramolecular polymers have been made that are transiently out-of-equilibrium by addition of a single shot of chemical fuel, or for long times by continuous addition of fuel and removal of waste. The mechanical properties of the latter artificial systems are quite poor in comparison with real microtubules. The aim of this CYCLOTUBES project is to make artificial microtubules from cyclic peptides that can chemically or enzymatically be switched between the assembled and disassembled state. To this end, we will use oxidation and reduction reactions in a cell-like environment, that is, in a membrane enclosed chamber. In the latter, chemical fuel can be added and waste be removed continuously. In addition, the assembly/disassembly of the artificial tubules can be monitored using microscopy. Our work will give fundamentally new insights into out-of-equilibrium self-assembly, and could lead to novel life-like materials that are capable of performing significant mechanical work due to the unique mechanical properties of the cyclic peptide tubules. The candidate will work at the forefront of the field of systems chemistry and supramolecular chemistry, which are very important for the competitiveness of Europe.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

UNIVERSITE DE STRASBOURG
Contribution nette de l'UE
€ 184 707,84
Coût total
€ 184 707,84