Project description
Nanorobot divers jump in to save the day from environmental water hazards
From wastewater treatment to environmental remediation after leaks or spills, cleaning up water to make it safe for humans and the environment is a pressing challenge. Unlike large pieces of trash that can be removed from parks and beaches by people, we do not have tiny divers to eliminate invisible threats from wastewater and aquatic ecosystems. All that is changing with the advent of micro-scale and nano-scale robots, especially miniature self-propelled robots that promise to clean up unsafe water in an incredibly efficient fashion owing to active mixing and large surface activity. The EU-funded Microbots4Enviro project is developing light-responsive autonomous micro-/nanorobots based on photocatalytic materials. The elaborately designed versatile nanorobots can not only actively function as pollutant cleaners (such as dyes and explosives), but also act as robust bacteria fighters in contaminated water.
Objective
Environmental degradation issue is a global concern. Great efforts have been made to develop efficient and green approaches for wastewater treatment. Self-propelled nano/microrobots are the forefront of nanotechnology, holding great promise for environmental remediation. Visible light driven semiconductor photocatalyst would be the great catalyst to power such micromachines for environmental remediation. BiVO4 has attracted researchers’ great interest. However, its drawbacks such as significant recombination of photogenerated electron–hole pairs, poor electrical conductivity and slow hole transfer kinetics limit its applications. To enhance the photocatalytic efficiency, this project elaborately develops light-responsive tubular micromotors with smart material design strategy: BiVO4 is robust visible light absorber; ZnO nanorod arrays act as electron transfer channel; rGO films function as electron acceptor; and Co-Pi serves as hole acceptor and catalytic site. The Microbots4Enviro project aims to: (i) establish novel tubular Co-Pi/BiVO4/ZnO/rGO micromotors; (ii) study the comprehensive performance of micromotors in the polluted water with three types of contaminant models (i.e. dye, explosive and bacteria model); and (iii) integrate abundant micromotors in 3DP-motor and demonstrate the pilot-scale test in artificial 5×5m2 pool for environmental remediation. This project will bring an experienced researcher, Dr. Huaijuan Zhou to undertake this cutting-edge multidisciplinary research project at UCT Prague in Czech Republic under the supervision of Prof. Martin Pumera, Director of Center for Advanced Functional Nanorobots. This fellowship will not only restart her research career, but also broaden her knowledge and expertise in the emerging area of self-propelled autonomous nano/micromachines. This project contributes to creating a strong scientific and technical base for European science and technology, and fostering the competitiveness and growth of EU economy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- natural sciences chemical sciences catalysis photocatalysis
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nano-materials
- social sciences political sciences government systems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-CAR - CAR – Career Restart panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
166 28 Praha
Czechia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.