Descrizione del progetto
Sommozzatori nanorobot si tuffano per salvarci dai pericoli ambientali dell’acqua
Dal trattamento delle acque reflue al risanamento ambientale dopo perdite o fuoriuscite, la pulizia dell’acqua per renderla sicura per l’uomo e l’ambiente è una sfida pressante. A differenza dei rifiuti di grosse dimensioni che possono essere rimossi dai parchi e dalle spiagge dalle persone, non disponiamo di piccoli subacquei per eliminare le minacce invisibili dalle acque reflue e dagli ecosistemi acquatici. Tutto ciò sta cambiando con l’avvento dei robot a micro e nano-scala, soprattutto i robot semoventi in miniatura che promettono di ripulire l’acqua non sicura in modo incredibilmente efficiente grazie alla miscelazione attiva e all’attività su grandi superfici. Il progetto Microbots4Enviro, finanziato dall’UE, sta sviluppando micro/nanorobot autonomi a risposta luminosa basati su materiali fotocatalitici. I versatili nanorobot, molto elaborati nella progettazione, non solo possono funzionare attivamente come «addetti alle pulizie» degli inquinanti (come coloranti ed esplosivi), ma possono anche agire come robusti combattenti contro i batteri in acque contaminate.
Obiettivo
Environmental degradation issue is a global concern. Great efforts have been made to develop efficient and green approaches for wastewater treatment. Self-propelled nano/microrobots are the forefront of nanotechnology, holding great promise for environmental remediation. Visible light driven semiconductor photocatalyst would be the great catalyst to power such micromachines for environmental remediation. BiVO4 has attracted researchers’ great interest. However, its drawbacks such as significant recombination of photogenerated electron–hole pairs, poor electrical conductivity and slow hole transfer kinetics limit its applications. To enhance the photocatalytic efficiency, this project elaborately develops light-responsive tubular micromotors with smart material design strategy: BiVO4 is robust visible light absorber; ZnO nanorod arrays act as electron transfer channel; rGO films function as electron acceptor; and Co-Pi serves as hole acceptor and catalytic site. The Microbots4Enviro project aims to: (i) establish novel tubular Co-Pi/BiVO4/ZnO/rGO micromotors; (ii) study the comprehensive performance of micromotors in the polluted water with three types of contaminant models (i.e. dye, explosive and bacteria model); and (iii) integrate abundant micromotors in 3DP-motor and demonstrate the pilot-scale test in artificial 5×5m2 pool for environmental remediation. This project will bring an experienced researcher, Dr. Huaijuan Zhou to undertake this cutting-edge multidisciplinary research project at UCT Prague in Czech Republic under the supervision of Prof. Martin Pumera, Director of Center for Advanced Functional Nanorobots. This fellowship will not only restart her research career, but also broaden her knowledge and expertise in the emerging area of self-propelled autonomous nano/micromachines. This project contributes to creating a strong scientific and technical base for European science and technology, and fostering the competitiveness and growth of EU economy.
Campo scientifico
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- natural scienceschemical sciencescatalysisphotocatalysis
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologynanotechnologynano-materials
- social sciencespolitical sciencesgovernment systems
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF-EF-CAR - CAR – Career Restart panelCoordinatore
166 28 Praha
Cechia