Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Graph convolutional neural networks for neutrino telescopes

Descripción del proyecto

Unos algoritmos de aprendizaje automático detectarán rápidamente señales de neutrinos en datos experimentales

El observatorio de neutrinos IceCube es un detector pionero que está enterrado bajo la superficie del Polo Sur a una profundidad de aproximadamente 2,5 kilómetros, abarcando aproximadamente un kilómetro cúbico de hielo, y que busca las partículas neutras casi sin masa denominadas neutrinos. Los neutrinos son una de las partículas más abundantes en el universo, pero son extremadamente difíciles de detectar debido a su falta de reactividad con la materia. La detección depende no solo de la infraestructura física del IceCube, sino también de los algoritmos de datos que buscan pruebas reveladoras sobre los neutrinos. El proyecto financiado con fondos europeos GraphNeT desarrolla algoritmos de aprendizaje automático sofisticados que podrían mejorar en un orden de magnitud la detección de partículas y en cuatro órdenes de magnitud la velocidad de análisis. Estas herramientas rápidas y potentes podrían favorecer asimismo a otros experimentos en el campo de la física.

Objetivo

While it is currently undergoing rapid developments, the neutrino sector still has many open questions: the neutrino mass
hierarchy is not known, several parameters of the PMNS matrix are poorly constrained, and the inability to explain the nonzero neutrino masses is a clear indication of physics beyond the Standard Model. Neutrino oscillation experiments at the
IceCube Neutrino Observatory may be able to address these fundamental questions, but the reconstruction of neutrino
interactions in the detector is a challenge which urgently needs to be addressed: the current reconstruction algorithm is
prohibitively time-consuming, cannot account for all known optical anisotropies in the ice, and cannot make full use of all of
the information from new modules in the IceCube Upgrade due to excessive computing time and memory requirements. This
project proposes graph convolutional neural networks (GCN) as a machine learning paradigm excellently suited for neutrino
telescope experiments, with potential to revolutionise reconstruction in IceCube. GCNs impose no structural requirements on
data, requiring only a concept of adjacency, naturally afforded by the spatial, temporal, and causal separation of hits in the
detector. With expected improvements in particle identification of a factor of 10 compared to analytical methods and a factor
10,000 speed-up in reconstruction, GCN-based reconstruction will be developed and implemented in the IceCube-DeepCore
oscillation analysis, to better measure PMNS parameters by improving the atmospheric muon background rejection and
performing per-flavour event categorisation. Powerful and fast GCN-based reconstruction will benefit several physics
analyses in IceCube --- and possibly ANTARES, KM3NeT, and Baikal-GVD --- and help answer the open questions in the
neutrino sector. Finally, the possibility for private and public sector partners to benefit from these high-performance GCN
tools will be explored through intersectional partnerships.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2019

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

KOBENHAVNS UNIVERSITET
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 207 312,00
Dirección
NORREGADE 10
1165 KOBENHAVN
Dinamarca

Ver en el mapa

Región
Danmark Hovedstaden Byen København
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 207 312,00
Mi folleto 0 0