CORDIS - Résultats de la recherche de l’UE
CORDIS

Advanced Modelling Aided Design of Tissue Engineered Construct for Optimal Soft Tissue Repair

Description du projet

Conception avancée de constructions techniques pour une réparation optimale des tissus mous

Le cartilage articulaire est un tissu conjonctif essentiel au bon fonctionnement des articulations. Sa détérioration entraîne une arthrose articulaire, qui restreint le mouvement de l’articulation. Les approches de génie tissulaire présentent une option de traitement prometteuse par le remplacement des tissus endommagés par des constructions de génie tissulaire. Selon l’hypothèse actuelle, les signaux mécaniques peuvent améliorer l’intégration fonctionnelle des constructions de génie tissulaire dans le cartilage hôte et ces signaux mécaniques peuvent être ajustés grâce à une distribution optimale de la rigidité du matériau et de la densité cellulaire. L’objectif du projet MADE-TEC, financé par l’UE, est de développer un modèle de calcul qui simule les comportements biomécaniques et de croissance des constructions de génie tissulaire et du cartilage hôte afin de déterminer la conception optimale pour une intégration fonctionnelle dans le cartilage.

Objectif

Articular cartilage (AC) is a connective tissue that is essential for smooth movement of our joints. Damage to AC leads to a debilitating joint disease called osteoarthritis (OA), which can cause severe restriction of joint movement and overall mobility. Currently, there are more than 40 million Europeans who are affected by OA. Tissue engineering approaches present promising treatment strategy through the replacement of the damaged tissues with tissue-engineered (TE) constructs. Although the current paradigm is to produce a cell-seeded biomaterial that matches the properties of the native tissue, such biomaterial may hinder growth and discourage replacement of the supportive biomaterials by newly synthesized proteins. Current TE constructs integrate poorly with the host tissue, with problems of interfacial gaps and compositional discontinuity, thus impeding their translation to the clinic. As cartilage cells are mechano-sensitive, we hypothesize that the mechanical signals conducive to cell biosynthesis can improve functional integration of TE constructs into host cartilage, and such mechanical signals can be tuned through carefully-designed TE constructs with optimal distribution of material stiffness and cell density. The aim of this research is to develop an advanced computational model that can simulate the biomechanical and growth behaviours of TE constructs and the host cartilage, and to use this model to determine optimal TE construct design that allows for functional integration into the host cartilage. The numerically-determined optimal design will be validated by state-of-the-art bioprinting technology and bioreactor testing. This computational biomechanical growth model will be the first-of-its kind as it can accelerate the design process and improve the performance of the TE constructs. This novel model can make a long-term impact on personalized design of TE constructs and have a high potential to advance the TE technique towards clinical translation.

Coordinateur

ITA-SUOMEN YLIOPISTO
Contribution nette de l'UE
€ 190 680,96
Adresse
YLIOPISTONRANTA 8
70211 KUOPIO
Finlande

Voir sur la carte

Région
Manner-Suomi Pohjois- ja Itä-Suomi Pohjois-Savo
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 190 680,96