Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Soft Artificial Muscles

Descripción del proyecto

Materiales inspirados por los músculos con mejores propiedades

Los músculos se caracterizan por una combinación incomparable de adaptabilidad, resistencia mecánica y flexibilidad al mismo tiempo. Los materiales sintéticos inspirados por músculos naturales deberían tener muchas aplicaciones en la robótica y la medicina. Los científicos del proyecto SAM, financiado con fondos europeos, desarrollarán este tipo de materiales a partir de hidrogeles sensibles a estímulos capaces de modificar su volumen en respuesta a la luz o la temperatura. Para superar los problemas relativos a una mala resistencia mecánica de estos hidrogeles, los investigadores combinarán estos polímeros con partículas coloides, lo que ofrecerá una capacidad de contracción y expansión direccional. El proyecto generará una plataforma para la síntesis de materiales biocompatibles y baratos.

Objetivo

The development of bioinspired materials that mimic animal muscles is a key step in the advancement of several scientific fields, including robotics and medicine. Muscles exhibit a unique combination of softness, mechanical resistance, adaptability and the ability to undergo large anisotropic deformations, which is so far unmatched in artificial materials. This action will develop a novel class of nanocomposite materials that mimic natural muscles by combining stimuli-responsive hydrogels (SRH) and colloidal liquid crystals (CLC).
SRHs consist of a network of stimuli-responsive polymer chains and a high fraction of water. By changing the solubility of the polymer with stimuli such as temperature and light it is possible to control the amount of water in the network, thereby producing large volumetric variations. SRHs are soft and shape-compliant actuating materials like muscles, but they generally exhibit poor mechanical resistance and the volumetric expansion has no preferential direction. These limitations will be overcome by attaching the stimuli-responsive polymer chains to anisotropic colloidal particles and assembling these building blocks in a uniaxially oriented manner like CLCs. The resulting nanocomposites will be soft, yet strong, capable of actuation-like conventional SRHs, and their expansion/contraction will be directional, thanks to the preferred orientation of the colloidal particles.
The proposed platform will rely on rod-like cellulose nanocrystals (CNCs) that will be decorated with cross-linkable poly-N-isopropylacrylamide chains bearing photoresponsive spiropyran units (poly-spiropyrans, PSPs). CNCs are inexpensive, biocompatible and can be easily extracted from renewable resources, while PSPs are known to form photoresponsive hydrogels. The combination of these elements and integration into uniaxially oriented structures will afford a novel class of soft actuators that will bring significant advancement to fields like robotics and medicine.

Palabras clave

Coordinador

UNIVERSITE DE FRIBOURG
Aportación neta de la UEn
€ 203 149,44
Dirección
AVENUE DE L EUROPE 20
1700 Fribourg
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Espace Mittelland Fribourg / Freiburg
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 203 149,44