Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Soft Artificial Muscles

Projektbeschreibung

Muskelähnliche Materialien mit verbesserten Eigenschaften

Muskeln zeichnen sich durch eine einzigartige Kombination von Anpassungsfähigkeit, mechanischer Widerstandsfähigkeit und Nachgiebigkeit aus. Für synthetische Materialien, die sich an natürlichen Muskeln orientieren, wird es daher viele Anwendungsmöglichkeiten in der Robotertechnik und Medizin geben. Ein wissenschaftliches Team im EU-finanzierten Projekt SAM wird nun solche Materialien aus stimuli-responsiven Hydrogelen entwickeln, deren Volumen sich je nach Licht oder Temperatur anpassen kann. Um das Problem der schwachen mechanischen Widerstandskraft von stimuli-responsiven Hydrogelen zu lösen, wollen die Forschenden die Polymere mit kolloidalen Partikeln kombinieren, die eine gerichtete Expansion und Kontraktion ermöglichen. Das Projekt wird eine Plattform für die Synthese kostengünstiger und biokompatibler Materialien erstellen.

Ziel

The development of bioinspired materials that mimic animal muscles is a key step in the advancement of several scientific fields, including robotics and medicine. Muscles exhibit a unique combination of softness, mechanical resistance, adaptability and the ability to undergo large anisotropic deformations, which is so far unmatched in artificial materials. This action will develop a novel class of nanocomposite materials that mimic natural muscles by combining stimuli-responsive hydrogels (SRH) and colloidal liquid crystals (CLC).
SRHs consist of a network of stimuli-responsive polymer chains and a high fraction of water. By changing the solubility of the polymer with stimuli such as temperature and light it is possible to control the amount of water in the network, thereby producing large volumetric variations. SRHs are soft and shape-compliant actuating materials like muscles, but they generally exhibit poor mechanical resistance and the volumetric expansion has no preferential direction. These limitations will be overcome by attaching the stimuli-responsive polymer chains to anisotropic colloidal particles and assembling these building blocks in a uniaxially oriented manner like CLCs. The resulting nanocomposites will be soft, yet strong, capable of actuation-like conventional SRHs, and their expansion/contraction will be directional, thanks to the preferred orientation of the colloidal particles.
The proposed platform will rely on rod-like cellulose nanocrystals (CNCs) that will be decorated with cross-linkable poly-N-isopropylacrylamide chains bearing photoresponsive spiropyran units (poly-spiropyrans, PSPs). CNCs are inexpensive, biocompatible and can be easily extracted from renewable resources, while PSPs are known to form photoresponsive hydrogels. The combination of these elements and integration into uniaxially oriented structures will afford a novel class of soft actuators that will bring significant advancement to fields like robotics and medicine.

Schlüsselbegriffe

Koordinator

UNIVERSITE DE FRIBOURG
Netto-EU-Beitrag
€ 203 149,44
Adresse
AVENUE DE L EUROPE 20
1700 Fribourg
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Espace Mittelland Fribourg / Freiburg
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 203 149,44