Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Xero-Branching: discovering how plant roots adapt to reduced water availability

Project description

Exploring plants' root adaptive responses and their impact on crop production

Plants forage for water and nutrients just like animals do – well, almost. Since they are not mobile, they do it with their roots. In order to optimise foraging, plants have evolved adaptive responses that change root shape via branching. Understanding the mechanisms driving adaptive responses at the root–soil interface will be important to maximising crop performance in the future. In particular, the challenges of climate change and water scarcity are impacting food crops, while population growth necessitates greater food production. The EU-funded Xerobranching project is studying the response of root tip tissues to transient water stress for insight that could help crops grow better under conditions of water scarcity.

Objective

Plant roots forage for key resources like water and nutrients which are often distributed heterogeneously in soil. Plants optimize foraging by employing adaptive responses to modify their root shape. The host laboratory recently discovered (using non-invasive X-ray microCT imaging) that root branching is tightly regulated by the availability of soil moisture. For example, roots growing through an air-filled space transiently repress root branching until re-entering moist soil. This new root adaptive response is termed Xerobranching. Initial studies reveal that Xerobranching is dependent on ABA and auxin responses. However, how these hormone pathways cross-talk to regulate Xerobranching is unclear.

Xerobranching is induced by transient accumulation of ABA in root tip tissues following reduced water uptake. Transient water stress also increases levels of protein SUMOylation in plant roots. The host lab recently reported in the journal Science that the transcription factor ARF7 is a target for SUMOylation during transient water stress. I will examine whether Xerobranching requires the ABA-dependent post-translational modification of key lateral root regulator, AUXIN RESPONSE FACTOR 7 (ARF7). I will also investigate whether Xerobranching depends on specific components of the SUMOylation machinery in an ABA-dependent manner. Furthermore, I will explore the wider impact of Xerobranching on soil exploration and crop performance.

The highly interdisciplinary project will allow me to master advanced molecular and imaging techniques. This experience will uniquely position me to study adaptive responses at the root-soil interface and exploit allelic variation in key loci to create new varieties of cereal crops with greater foraging abilities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

THE UNIVERSITY OF NOTTINGHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
University Park
NG7 2RD Nottingham
United Kingdom

See on map

Region
East Midlands (England) Derbyshire and Nottinghamshire Nottingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0