Project description
New generation of high-efficiency OLEDs using deep red and near-infrared emitters
Thermally activated delayed fluorescence (TADF) is a mechanism for enhancing the efficiency of organic light-emitting devices (OLEDs). The devices using this mechanism are known as third-generation OLEDs and have internal quantum efficiencies approaching 100 %. So far, little is known about materials based on TADF emitting deep red and near-infrared light. These materials could find use in night vision displays, sensors and information-secured displays. The EU-funded TADFNIR project will use rational methods of organic material synthesis to produce TADF emitters in these frequencies. The project has set out to solve three main challenges with current generation OLED TADF emitters: efficiency roll-off, short lifetime and low purity of emission colour.
Objective
First-generation fluorescent and second-generation phosphorescent organic light-emitting diodes (OLEDs) can achieve maximum internal quantum efficiency (IQE) of 25% and 100%, respectively. Phosphorescent OLEDs with complexes based on iridium and platinum realize 100% IQE due to the heavy atom effect. However, there are limitations, including but not limited to their scarcity and toxicity profile. The third generation OLEDs based on a thermally activated delayed fluorescence (TADF) process can be realized in purely organic materials and produce devices with 100% IQE. So far, there are examples of high-performance blue, green and red TADF OLEDs; however, limited attention has been paid to deep red (DR) and near-infrared (NIR) TADF emitters (650-750 nm). Such DR and NIR emitters find applications in night vision displays, sensors and information-secured displays etc. Current NIR OLEDs are associated with issues related to efficiency roll-off, lifetime and purity of emission color. Most importantly, the materials contain osmium, iridium, or platinum metals and therefore these OLEDs suffer from the same issues as visible light phosphorescent counterparts. This proposal seeks to address the above issues by rational design of purely organic novel DR and NIR TADF emitters. Our design comprises of yet unexplored rigid anthrone-based strong electron acceptor decorated with suitably substituted donor carbazoles. Emission color tunability can be achieved as a function of donor choice and position and varying the strengths of either the donor or acceptor. The rigidity of the molecular components, the strengths of the acceptor/donor, the twisted conformation, and the presence of tertiary butyl groups on the carbazoles altogether will work coherently to furnish good device stability, reduced efficiency roll-off, narrow emission spectra and an improved lifetime of the OLEDs. Overall, this proposal is anticipated to provide a major breakthrough in DR and NIR TADF emitters.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
KY16 9AJ ST ANDREWS
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.