Project description
New theoretical approaches for describing quantum matter out of equilibrium
Matter is composed of a enormous number of quantum particles whose dynamics are often dominated by interactions. In spite of this exceptional complexity, when a macroscopic object is close to an equilibrium state its gross properties are efficiently described by a rather simple set of macroscopic equations: the laws of thermodynamics. An outstanding challenge of theoretical physics is to devise a quantitative description of matter when it is far from any equilibrium state. The EU-funded BRICDOQ project aims to understand how and when equilibrium statistical mechanics emerges from the coherent dynamics of closed quantum systems and explain the fundamental mathematical structure underlying universal features of the dynamics. To achieve its goals, the project will elaborate new methods to describe the finite-time dynamics of quantum many-body systems using the extreme cases of 'integrable' and 'chaotic' systems as starting points. The idea is to characterise the dynamics quantitatively by pinpointing paradigmatic exactly solvable models.
Objective
The proposal tackles fundamental open questions about out-of-equilibrium quantum matter that have recently become of experimental and technological relevance. The main objectives are: (i) Understand how, and when equilibrium statistical mechanics emerges from the coherent dynamics of closed quantum systems. (ii) Explain the fundamental mathematical structure underlying universal dynamical features. I will address these issues by developing an overarching description of finite-time dynamics based on integrable and chaotic systems. The idea is to characterise quantitatively the dynamics by pinpointing paradigmatic exactly solvable models. The exact solutions of these models will also help to elaborate new analytical and numerical techniques. The proposal encompasses two main parts: WP1-2. WP1 is devoted to integrable systems. These are systems with a macroscopic number of local conservation laws. They play a key role in understanding out-of-equilibrium quantum matter because their dynamics is sufficiently constrained to be, to some extent, solvable. I will devise a general method for describing their large but finite time dynamics. In particular, I will characterise their approach to the asymptotic (generalized) hydrodynamic regime which I recently helped to identify. WP2 focusses on maximally chaotic systems, i.e. systems without local conservation laws. These systems are interesting because are able to model several generic dynamical features. I will characterise the maximally-chaotic dynamics in any spatial dimension using “dual-unitary quantum circuits”, a class of solvable periodically-driven systems that my collaborators and I recently introduced.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences classical mechanics statistical mechanics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.