European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Transition metal carbides as efficient catalysts for methane partial oxidation

Description du projet

Un catalyseur amélioré pour la conversion du méthane en gaz de synthèse

Le méthane subsiste dans l’atmosphère pendant une durée beaucoup plus courte que le dioxyde de carbone, mais il a un impact 25 fois plus important. L’oxydation partielle du méthane en syngaz (gaz de synthèse) est une méthode plus efficace que le reformage à la vapeur, mais les catalyseurs utilisés pour ce processus ont posé certains problèmes. Le projet TMC4MPO, financé par l’UE, procédera à un criblage virtuel en vue d’identifier les catalyseurs les plus susceptibles de présenter une activité, une sélectivité et une stabilité élevées dans les conditions de réaction appropriées. L’accent sera mis sur les catalyseurs à base de métaux nobles tels que le rhodium, le palladium, le platine et l’or ainsi que sur les catalyseurs à base de métaux de base tels que le cobalt et le nickel, qui sont moins chers que les métaux nobles.

Objectif

Methane is a particularly problematic greenhouse gas as its impact is 25 times greater than carbon dioxide over a 100-year period. Human activity has increased the amount of methane in the atmosphere, contributing to climate change. Therefore, there is an imperative for the transformation of methane into useful chemicals. At this time, the most economically available route for the conversion of methane into more valuable chemicals is via synthesis gas, a mixture of CO and H2. The only large-scale process for natural gas conversion involves a reaction known as methane-steam reforming. However, it is an endothermic process that requires high operating temperatures. Methane partial oxidation (MPO) is a promising energy saving alternative because it does not require the use of superheated steam. A major goal is to find a catalyst that exhibits high activity, selectivity and stability at the relevant reaction conditions.
This project envisions the computational prediction of novel MPO catalysts that overcome this challenges by computationally screening a large set of materials consisting of precious metals (Rh, Pd, Pt, Au) and more affordable metals (Co, Ni, Cu) supported on transition metal carbides (TMCs, TM = Ti, Zr, Hf, V, Nb, Ta, Mo, W). These type of catalysts have exhibited outstanding performance in other chemical reactions in the past 5 years. To this end, state-of-the-art Density Functional Theory and Kinetic Monte Carlo frameworks will be employed to provide direct predictions of activity, selectivity, stability and yield for the most promising catalysts at relevant reaction conditions. Moreover, the large amount of results gathered from this project will serve as a big dataset to conduct descriptor analysis, and will suggest key properties that correlate well with their activity for C-H and O-H bond activation. The results obtained will be discussed with our experimental collaborators, who will prepare a selected set of catalysts based on my findings.

Coordinateur

UNIVERSITY COLLEGE LONDON
Contribution nette de l'UE
€ 212 933,76
Adresse
GOWER STREET
WC1E 6BT London
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Camden and City of London
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 212 933,76