Description du projet
Des «réacteurs» luminescents pourraient améliorer la viabilité énergétique des bâtiments
Les concentrateurs solaires luminescents (LSC) constituent une technologie prometteuse pour l’énergie photovoltaïque intégrée aux bâtiments. Cependant, certains mécanismes de perte optique tels que la diffusion de la lumière empêchent les prototypes d’atteindre les rendements théoriques de conversion énergétique. L’objectif du projet PLECTRA, financé par l’UE, est de mieux comprendre, contrôler et exploiter les mécanismes de diffusion de la lumière pour concevoir des LSC plus performants. Pour atteindre ses objectifs, le projet s’appuiera sur la photoluminescence renforcée par plasmon, un phénomène par lequel l’efficacité d’une espèce luminescente (par exemple les points quantiques) est améliorée par la diffusion du plasmon. Pour valider le principe de cette idée, le projet va intégrer des LSC dans un verre électrochrome.
Objectif
Luminescent solar concentrators (LSCs) have the potential to facilitate widespread deployment of building-integrated photovoltaics (BIPV) into our cities. However, prototype devices still fail to achieve the theoretical efficiencies due to contributions from optical loss mechanisms, including light scattering. The aim of PLECTRA is to understand, control and harness the contribution of light scattering mechanisms to design efficient LSCs that can be used in BIPV. The phenomenon of plasmon-enhanced photoluminescence, in which elastic scattering from plasmonic nanoparticles boosts the photoluminescence efficiency of a luminescent species (e.g. quantum dots), will be exploited to harness scattering and improve the LSC performance. To achieve this we will use a layer-by-layer deposition approach to prepare resonator-emitter core-satellite structures, in which the two species are separated by a quantifiable distance. Single particle scattering and photoluminescence studies, will be used to determine the required separation to obtain plasmon-coupled photoluminescence (rather than quenching). Optimised species will be incorporated into LSCs and sophisticated angle-resolved scattering measurements, in conjugation with numerical simulations, will be used to evaluate the scattering pathways in the device. Finally proof-of-concept integration of the LSCs with PV cells, and subsequently electrochromic glass will be demonstrated as evidence for potential application in BIPV.
Champ scientifique
- engineering and technologymaterials engineering
- engineering and technologynanotechnologynano-materials
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
- engineering and technologycivil engineeringarchitecture engineeringsustainable architecturesustainable building
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
CB2 1TN Cambridge
Royaume-Uni