Description du projet
Renouveler les modèles de prédiction diagnostique des maladies cardiaques
Chaque année, près de la moitié des décès enregistrés en Europe sont liés à des maladies cardiovasculaires. Ces dernières années, l’émergence d’une nouvelle génération de réseaux de neurones profonds (DNN pour «deep neural networks») a considérablement amélioré la précision prédictive, améliorant l’évaluation des risques et le diagnostic précoce. Malheureusement, l’efficacité de ces outils n’a pas encore été appliquée en clinique. Le projet UNCARIA, financé par l’UE, vise à améliorer la capacité des prévisions avec un degré de confiance bien fondé. Les modèles actuels sont largement dépourvus de cette capacité, ce qui compromet leur potentiel d’adoption clinique. Ce projet aidera les DNN non seulement à produire des prévisions diagnostiques précises, mais aussi à modéliser leurs erreurs et à en prendre conscience.
Objectif
Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.
The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.
This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles informatique et science de l'information intelligence artificielle vision par ordinateur
- sciences médicales et de la santé médecine clinique cardiologie maladies cardiovasculaires
- sciences naturelles informatique et science de l'information intelligence artificielle intelligence de calcul
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
08002 Barcelona
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.