Projektbeschreibung
Diagnose von Herzerkrankungen mit neuen Vorhersagemodellen
Etwa die Hälfte aller pro Jahr in Europa registrierten Todesfälle hängen mit Herz-Kreislauf-Erkrankungen zusammen. Durch das Aufkommen einer neuen Generation von tiefen neuronalen Netzen in den letzten Jahren hat sich die Prognosegenauigkeit deutlich verbessert, was sich auch positiv auf Risikobewertung und frühzeitige Diagnosen auswirkt. Doch leider konnten diese Werkzeuge klinisch noch nicht effektiv umgesetzt werden. Das EU-finanzierte Projekt UNCARIA will Vorhersagen ermöglichen, die besser fundiert und zuverlässiger sind. Den gängigen Modellen fehlt diese Zuverlässigkeit, weshalb sie für einen Einsatz im klinischen Bereich nicht in Frage kommen. Die Arbeiten im Projekt sollen tiefe neuronale Netze dazu bringen, genaue diagnostische Vorhersagen zu treffen, aber gleichzeitig auch ihre Fehler modellieren und sie zum weiteren Untersuchungsgegenstand machen.
Ziel
Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.
The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.
This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Sehen
- Medizin- und Gesundheitswissenschaften Klinische Medizin Kardiologie Herz-Kreislauf-Erkrankungen
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz Computational Intelligence
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2019
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
08002 Barcelona
Spanien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.