Skip to main content
European Commission logo print header

Motion Powered 3D Printed Self-Healable Energy Storage for Wearable Electronics utilizing Plastic Waste

Descripción del proyecto

Botellas de plástico para cargar la batería del teléfono móvil

Desarrollar nanogeneradores triboeléctricos puede ser un método eficaz para transformar la energía biomecánica de modo que permita cargar y aumentar la vida útil de las baterías que utilizan los dispositivos multimedia tales como teléfonos móviles, relojes inteligentes y tabletas. Sin embargo, los nanogeneradores triboeléctricos generan poca energía. Para abordar esta cuestión, el proyecto MotionESt, financiado con fondos europeos, tiene como objetivo desarrollar dispositivos integrados que conectarán un nanogenerador triboeléctrico de alto rendimiento con un supercondensador (SC) capaz de almacenar la energía biomecánica transformada. Además, la densidad de energía del SC se incrementará a través de los MXenos de Ti3C2 porosos como materiales de electrodos. La metodología se basará en la impresión 3D de un filamento de tereftalato de polietileno (PET) con base de grafito y Ti3C2, seguida de pirólisis. Lo que es más, se utilizarán botellas de plástico como fuente de PET, de modo que se ofrecerá una solución innovadora para convertir residuos en riqueza.

Objetivo

Portable and wearable devices including smartwatches, health monitoring, and multimedia devices are becoming increasingly popular in our daily lives. These devices are generally powered by batteries that have a limited lifetime. Recently, the development of triboelectric nanogenerators (TENGs) has shown to be an effective approach to transforming biomechanical energy to power up these devices. However, TENGs generate low energy and AC signals which limit their use in continuously powering up electronics. The AC signals of TENGs must be converted and stored in energy storage. Among energy storage devices, supercapacitors (SCs) are found to be a promising device due to their high power density, moderate energy density, long cycle life, and safe use. Hence, this project aims to develop an integrated device (TENGSC), connecting a high-performance TENG with an SC, which can store the transformed biomechanical energy. However, the TENG and SC are susceptible to undergoing damage during biomechanical actions. This mechanical damage can be overcome by developing self-healable TENG and SC. The self-healing nature will help to restore their properties if any damage happens during the cyclic movements. Moreover, to harvest high power from the TENG, a 3D printing technique will be followed, which can easily introduce micropatterns on the film surface. The micro-patterns provide higher frictional effect which is the key factor in increasing the conversion efficiency of TENG. Besides, the energy density of the SC can be increased through using porous MXenes –Ti3C2 as electrode materials. This can be developed through the 3D printing of a Ti3C2/graphite–based polyethylene terephthalate (PET) filament followed by pyrolysis. The waste drinking water bottles can be used as PET source. Thus, through this work, biomechanically driven smart power source will be developed along with concept of waste to wealth transformation, which can be used in portable and wearable electronics.

Coordinador

VYSOKE UCENI TECHNICKE V BRNE
Aportación neta de la UEn
€ 144 980,64
Dirección
ANTONINSKA 548/1
601 90 Brno Stred
Chequia

Ver en el mapa

Región
Česko Jihovýchod Jihomoravský kraj
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 144 980,64