Skip to main content
European Commission logo print header

Motion Powered 3D Printed Self-Healable Energy Storage for Wearable Electronics utilizing Plastic Waste

Descrizione del progetto

Bottiglie di plastica per alimentare le batterie dei nostri smartphone

Lo sviluppo di nanogeneratori triboelettrici può essere un approccio efficace alla trasformazione dell’energia biomeccanica per accendere e aumentare la durata delle batterie utilizzate nei nostri dispositivi multimediali, come smartphone, smartwatch e tablet. Tuttavia, i nanogeneratori triboelettrici generano bassa energia. Per affrontare questo problema, il progetto MotionESt, finanziato dall’UE, si propone di sviluppare dispositivi integrati che collegheranno un nanogeneratore triboelettrico ad alte prestazioni con un supercondensatore in grado di immagazzinare l’energia biomeccanica trasformata. Inoltre, la densità di energia del supercondensatore verrà aumentata grazie a Mxeni Ti3C2 porosi usati come elettrodi. La metodologia si baserà sulla stampa 3D di un filamento di polietilene tereftalato (PET) a base di Ti3C2/grafite seguito da pirolisi. Inoltre, le bottiglie di plastica verranno utilizzate come fonte di PET, fornendo una soluzione innovativa dallo spreco alla ricchezza.

Obiettivo

Portable and wearable devices including smartwatches, health monitoring, and multimedia devices are becoming increasingly popular in our daily lives. These devices are generally powered by batteries that have a limited lifetime. Recently, the development of triboelectric nanogenerators (TENGs) has shown to be an effective approach to transforming biomechanical energy to power up these devices. However, TENGs generate low energy and AC signals which limit their use in continuously powering up electronics. The AC signals of TENGs must be converted and stored in energy storage. Among energy storage devices, supercapacitors (SCs) are found to be a promising device due to their high power density, moderate energy density, long cycle life, and safe use. Hence, this project aims to develop an integrated device (TENGSC), connecting a high-performance TENG with an SC, which can store the transformed biomechanical energy. However, the TENG and SC are susceptible to undergoing damage during biomechanical actions. This mechanical damage can be overcome by developing self-healable TENG and SC. The self-healing nature will help to restore their properties if any damage happens during the cyclic movements. Moreover, to harvest high power from the TENG, a 3D printing technique will be followed, which can easily introduce micropatterns on the film surface. The micro-patterns provide higher frictional effect which is the key factor in increasing the conversion efficiency of TENG. Besides, the energy density of the SC can be increased through using porous MXenes –Ti3C2 as electrode materials. This can be developed through the 3D printing of a Ti3C2/graphite–based polyethylene terephthalate (PET) filament followed by pyrolysis. The waste drinking water bottles can be used as PET source. Thus, through this work, biomechanically driven smart power source will be developed along with concept of waste to wealth transformation, which can be used in portable and wearable electronics.

Coordinatore

VYSOKE UCENI TECHNICKE V BRNE
Contribution nette de l'UE
€ 144 980,64
Indirizzo
ANTONINSKA 548/1
601 90 Brno Stred
Cechia

Mostra sulla mappa

Regione
Česko Jihovýchod Jihomoravský kraj
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 144 980,64