European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Motion Powered 3D Printed Self-Healable Energy Storage for Wearable Electronics utilizing Plastic Waste

Description du projet

Des bouteilles en plastique pour alimenter les batteries de nos smartphones

Le développement de nanogénérateurs triboélectriques (TENG) pourrait constituer une approche efficace pour transformer l’énergie biomécanique et ainsi alimenter les piles de nos appareils multimédias, tels que les smartphones, les montres intelligentes et les tablettes, tout en augmentant leur durée de vie. Cependant, les TENG génèrent peu d’énergie. Pour remédier à ce problème, le projet MotionESt, financé par l’UE, entend mettre au point des dispositifs intégrés qui relieront les TENG haute performance à des supercondensateurs (SC) capables de stocker l’énergie biomécanique transformée. Par ailleurs, la densité énergétique des supercondensateurs pourra être accrue grâce à l’utilisation de Ti3C2 MXenes poreux comme matériaux d’électrode. Cette méthodologie reposera sur l’impression 3D d’un filament de polyéthylène téréphtalate (PET) à base de Ti3C2/graphite, suivie d’une pyrolyse. En outre, le PET pourra provenir de bouteilles en plastique, offrant ainsi une solution innovante pour transformer les rebuts en richesses.

Objectif

Portable and wearable devices including smartwatches, health monitoring, and multimedia devices are becoming increasingly popular in our daily lives. These devices are generally powered by batteries that have a limited lifetime. Recently, the development of triboelectric nanogenerators (TENGs) has shown to be an effective approach to transforming biomechanical energy to power up these devices. However, TENGs generate low energy and AC signals which limit their use in continuously powering up electronics. The AC signals of TENGs must be converted and stored in energy storage. Among energy storage devices, supercapacitors (SCs) are found to be a promising device due to their high power density, moderate energy density, long cycle life, and safe use. Hence, this project aims to develop an integrated device (TENGSC), connecting a high-performance TENG with an SC, which can store the transformed biomechanical energy. However, the TENG and SC are susceptible to undergoing damage during biomechanical actions. This mechanical damage can be overcome by developing self-healable TENG and SC. The self-healing nature will help to restore their properties if any damage happens during the cyclic movements. Moreover, to harvest high power from the TENG, a 3D printing technique will be followed, which can easily introduce micropatterns on the film surface. The micro-patterns provide higher frictional effect which is the key factor in increasing the conversion efficiency of TENG. Besides, the energy density of the SC can be increased through using porous MXenes –Ti3C2 as electrode materials. This can be developed through the 3D printing of a Ti3C2/graphite–based polyethylene terephthalate (PET) filament followed by pyrolysis. The waste drinking water bottles can be used as PET source. Thus, through this work, biomechanically driven smart power source will be developed along with concept of waste to wealth transformation, which can be used in portable and wearable electronics.

Coordinateur

VYSOKE UCENI TECHNICKE V BRNE
Contribution nette de l'UE
€ 144 980,64
Adresse
ANTONINSKA 548/1
601 90 Brno Stred
Tchéquie

Voir sur la carte

Région
Česko Jihovýchod Jihomoravský kraj
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 144 980,64