Project description
Human embryonic stem cells as a source of growth hormone-releasing hormone neurons
Growth hormone-releasing hormone (GHRH) stimulates the pituitary gland to produce and release growth hormone (GH) into the bloodstream. GHRH is released by the neurosecretory nerve terminals in the arcuate nucleus of the hypothalamus in a pulsatile manner, stimulating similar pulsatile release of the GH. The mechanisms of GH regulation are poorly understood since hypothalamic GHRH neurons are virtually impossible to obtain for disease modelling. The goal of the EU-funded GHRH neurons project is to produce GHRH neurons by in vitro differentiation from self-renewable human embryonic stem cells. This project will provide a platform to model the genetic causes of GH deficiency with possible applications in human growth-modulating drug discovery.
Objective
Hypothalamic growth hormone-releasing hormone (GHRH) neurons stimulate pulsatile pituitary growth hormone (GH) secretion and thereby determine glucose homeostasis and growth in children and eventually adult height. Conversely, growth hormone deficiency is potentially lethal in neonates, and can lead to short stature and significant morbidity later in life. However, the mechanisms of growth hormone deficiency are incompletely understood, since pituitary cells and hypothalamic GHRH neurons are virtually impossible to obtain for disease modelling. The aim of my proposal is to differentiate GHRH neurons from human embryonic stem cells (hESCs), which can self-renew indefinitely in culture while maintaining the ability to become almost any cell type in the human body. My proposal is comprised of three distinct work packages (WP1-3). In WP1, I will develop a conventional growth factor-based protocol for GHRH neuron differentiation by taking advantage of the existing knowledge on signals regulating hypothalamic development. In WP2, I will use RNA sequencing data from WP1 to directly differentiate hESCs to GHRH neurons by CRISPR-dCas9-based gene activation system (CRISPRa), which can temporally control the transcription of desired endogenous loci. In WP3, I will characterize the endocrine and electrophysiological properties of GHRH cells from WP1 and WP2. My project will provide a platform to model genetic causes of GH deficiency, and is expected to be applicable for human growth-modulating drug discovery. The three WPs will be carried out in an excellent training environment at the Stem Cells and Metabolism Research Program at the Research Program Unit (research flagship program of the University of Helsinki, Finland).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences biological sciences genetics RNA transcriptomes
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00014 HELSINGIN YLIOPISTO
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.