Project description
The Baum–Connes conjecture for discrete quantum groups exhibiting torsion phenomena
The Baum–Connes conjecture suggests that the K-theory of the reduced C-star algebra of a group is identical with the equivariant K-homology of a certain sort of classifying space for the group. Meyer and Nest have reformulated the conjecture using the language of triangulated categories. This reformulation works for both classical locally compact groups and torsion-free discrete quantum groups. The EU-funded CONCOQUANT project aims to address key questions regarding torsion phenomena in discrete quantum groups. The project will also study how to obtain stability properties of Baum–Connes for relevant constructions of quantum groups – quantum semi-direct products and free wreath products.
Objective
This project focuses on the Baum-Connes conjecture formulation for discrete quantum groups. The work of R. Meyer and R. Nest in the second half of 2000's has lead to a categorial formulation of the Baum-Connes conjecture in the context of triangulated categories. This reformulation works for both classical locally compact groups and torsion-free discrete quantum groups. Thus one of the main questions that the project aims to understand is the torsion phenomena for discrete quantum groups in relation with the categorical framework of Meyer-Nest. This will allow to manipulate conveniently the corresponding homological algebra for two main purposes. First, introducing a new insight for a proper formulation of the Baum-Connes conjecture for arbitrary discrete quantum groups. Second, carrying out explicit K-theory computations of C*-algebras defining relevant examples of quantum semi-direct products and free wreath products. The compact bicrossed product construction will be studied in detail in this framework in order to classify its torsion actions and to obtain the corresponding stability result of BC. Moreover, this construction will provide a vast class of new examples satisfying the quantum BC conjecture coming from recent constructions by several authors involving approximation properties such as property (T) or Haagerup property. The project aims also to carry out further developments in the quantum setting. One the one hand, defining and developping a quantum equivariant Künneth formula theory using the notion of Künneth functor. On the other hand, studying the recently discovered connections between compact quantum groups and non-local games, in the framework of quantum information theory, in order to address relevant open questions concerning the Connes' embedding conjecture with potential applications and consequences within the area of algorithm theory in computer science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences quantum physics
- natural sciences mathematics pure mathematics algebra
- natural sciences computer and information sciences
- natural sciences mathematics pure mathematics topology algebraic topology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.