Description du projet
Tirer les leçons du passé constitue une nouvelle façon de réduire le bruit dans les images cryo-EM
Il y a quelques années encore, il était difficile d’obtenir des images des molécules biologiques sans les cristalliser, et toutes les molécules ne peuvent pas être formées en grands cristaux. La microscopie cryo-électronique (cryo-EM) permet de surmonter cet obstacle, en imagerie des molécules gelées en solution avec des faisceaux d’électrons, une technique récompensée par le prix Nobel de chimie en 2017. Le projet EM-PRIOR, financé par l’Union européenne, entend améliorer encore ce qui se fait de mieux en faisant appel à une technique du passé qui permettra d’améliorer la résolution du signal dans le bruit. La stratégie de débruitage informatique s’appuiera sur des réseaux neuronaux convolutionnels pour «apprendre» une grande partie de ce qui est déjà connu sur les structures biologiques. Cela permettra en fin de compte de mieux focaliser l’objet en question.
Objectif
Electron cryo-microscopy (cryo-EM) is the fastest growing technique to explore the structure of biological macromolecules. To limit radiation damage, images are recorded under low-dose conditions, which leads to high levels of experimental noise. To reduce the noise, one averages over many images, but this requires alignment and classification algorithms that are robust to the high levels of noise. When signal-to-noise ratios drop, cryo-EM 3D reconstruction algorithms become susceptible to overfitting, ultimately limiting their applicability. The algorithms can be improved by incorporating prior knowledge. The most widely used approaches in the field to date incorporate the prior knowledge that cryo-EM reconstructions are smooth in a Bayesian approach. However, in terms of information content, the smoothness prior reflects poorly compared to the vast amount of prior knowledge that structural biology has gathered in the past 50 years. I aim to develop a computational pipeline that can exploit much more of the existing knowledge about biological structures in the cryo-EM structure determination process. I will express this prior knowledge through convolutional neural networks that have been trained on many reconstructions, and use these networks in novel algorithms that optimise a regularised likelihood function. Similar approaches have excelled in image denoising and reconstruction in related areas. Preliminary results with simulated data suggest that significant improvements beyond the existing methods are possible, both in computational speed and in signal recovery capabilities. The proposed methods will enable faster computations with less user involvement, but most importantly, they will extend the applicability of cryo-EM structure determination to many more samples, alleviating the existing experimental requirements of particle size, ice thickness and sample purity.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences physiques optique microscopie electron microscopy
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
- sciences naturelles sciences biologiques biologie moléculaire biologie structurale
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
SN2 1FL Swindon
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.