Projektbeschreibung
Weniger verrauschte Kryo-Elektronenmikroskopie-Bilder dank bekannter Erkenntnisse
Noch vor wenigen Jahren war es schwierig, biologische Moleküle abzubilden, ohne sie zu kristallisieren, und nicht alle Moleküle können zu großen Kristallen geformt werden. Die Kryo-Elektronenmikroskopie überwindet nun diese Barriere, indem sie in Lösung eingefrorene Moleküle mittels Elektronenstrahlen abbildet. Dieses Verfahren wurde 2017 mit dem Nobelpreis für Chemie ausgezeichnet. Mit einer Reise in die Vergangenheit wird das EU-finanzierte Projekt EM-PRIOR das Beste noch verbessern, indem es die Auflösung des Signals innerhalb des Rauschens erhöht. Die computergestützte Entrauschungsstrategie wird auf faltenden neuronalen Netzwerken beruhen, um viel von dem zu „lernen“, was über biologische Strukturen bereits bekannt ist. Im Endeffekt wird dadurch das Objekt klarer in den Fokus gerückt.
Ziel
Electron cryo-microscopy (cryo-EM) is the fastest growing technique to explore the structure of biological macromolecules. To limit radiation damage, images are recorded under low-dose conditions, which leads to high levels of experimental noise. To reduce the noise, one averages over many images, but this requires alignment and classification algorithms that are robust to the high levels of noise. When signal-to-noise ratios drop, cryo-EM 3D reconstruction algorithms become susceptible to overfitting, ultimately limiting their applicability. The algorithms can be improved by incorporating prior knowledge. The most widely used approaches in the field to date incorporate the prior knowledge that cryo-EM reconstructions are smooth in a Bayesian approach. However, in terms of information content, the smoothness prior reflects poorly compared to the vast amount of prior knowledge that structural biology has gathered in the past 50 years. I aim to develop a computational pipeline that can exploit much more of the existing knowledge about biological structures in the cryo-EM structure determination process. I will express this prior knowledge through convolutional neural networks that have been trained on many reconstructions, and use these networks in novel algorithms that optimise a regularised likelihood function. Similar approaches have excelled in image denoising and reconstruction in related areas. Preliminary results with simulated data suggest that significant improvements beyond the existing methods are possible, both in computational speed and in signal recovery capabilities. The proposed methods will enable faster computations with less user involvement, but most importantly, they will extend the applicability of cryo-EM structure determination to many more samples, alleviating the existing experimental requirements of particle size, ice thickness and sample purity.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Naturwissenschaften Optik Mikroskopie electron microscopy
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen Deep Learning
- Naturwissenschaften Biowissenschaften Molekularbiologie Strukturbiologie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2019
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
SN2 1FL Swindon
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.