Descrizione del progetto
Imparare dal passato è un modo innovativo per ridurre il rumore dalle immagini cryo-EM
Fino a pochi anni fa era difficile rappresentare per immagini le biomolecole senza cristallizzarle, e non tutte le molecole possono essere formate in grossi cristalli. La microscopia crioelettronica (cryo-EM) supera questi ostacoli, rappresentando per immagini le molecole congelate in soluzione con fasci di elettroni, una tecnica insignita dal Premio Nobel per la Chimica nel 2017. Il progetto EM-PRIOR, finanziato dall’UE, andrà ancora oltre con un tuffo nel passato che aumenterà la risoluzione del segnale nel rumore. La strategia di riduzione del rumore computazionale si baserà su reti neurali convoluzionali per «apprendere» molto di ciò che è già noto sulle strutture biologiche, contribuendo in ultimo a mettere ancora più a fuoco questo oggetto.
Obiettivo
Electron cryo-microscopy (cryo-EM) is the fastest growing technique to explore the structure of biological macromolecules. To limit radiation damage, images are recorded under low-dose conditions, which leads to high levels of experimental noise. To reduce the noise, one averages over many images, but this requires alignment and classification algorithms that are robust to the high levels of noise. When signal-to-noise ratios drop, cryo-EM 3D reconstruction algorithms become susceptible to overfitting, ultimately limiting their applicability. The algorithms can be improved by incorporating prior knowledge. The most widely used approaches in the field to date incorporate the prior knowledge that cryo-EM reconstructions are smooth in a Bayesian approach. However, in terms of information content, the smoothness prior reflects poorly compared to the vast amount of prior knowledge that structural biology has gathered in the past 50 years. I aim to develop a computational pipeline that can exploit much more of the existing knowledge about biological structures in the cryo-EM structure determination process. I will express this prior knowledge through convolutional neural networks that have been trained on many reconstructions, and use these networks in novel algorithms that optimise a regularised likelihood function. Similar approaches have excelled in image denoising and reconstruction in related areas. Preliminary results with simulated data suggest that significant improvements beyond the existing methods are possible, both in computational speed and in signal recovery capabilities. The proposed methods will enable faster computations with less user involvement, but most importantly, they will extend the applicability of cryo-EM structure determination to many more samples, alleviating the existing experimental requirements of particle size, ice thickness and sample purity.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali scienze fisiche ottica microscopia electron microscopy
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico apprendimento profondo
- scienze naturali scienze biologiche biologia molecolare biologia strutturale
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2019
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
SN2 1FL Swindon
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.