Project description
NMR spectroscopy of large protein complexes
Nuclear magnetic resonance (NMR) spectroscopy identifies protein dynamics in solution on a broad range of timescales and at atomic resolution. However, NMR studies of large proteins remain challenging as the conventional NMR methods are confined to small proteins. The EU-funded NMRofLargeComplexes project aims to extend the NMR limits to large protein complexes by combining recent developments in site-specific labelling with novel NMR methods and spectrometers. This development will facilitate the study of functionally important dynamics and substrate interactions of large protein complexes, providing insight into the relationship between dynamics, structure and function. Current studies will focus on the eukaryotic exosome, a 370 kDa soluble, asymmetric decamer, and the 80 kDa NapA Na+/H+ antiporter, an integral membrane dimer involved in ion transport.
Objective
Dynamic properties of proteins are essential for their function. NMR can reveal protein dynamics in solution on a broad range of timescales and at atomic resolution. However, NMR studies of large proteins remain challenging since conventional NMR methods are constrained to small proteins. The aim of this project is to extend the NMR size limit to large protein complexes by combining recent developments in site-specific labeling schemes with novel NMR methods employing state-of-the-art spectrometers. This will facilitate the study of functionally essential but so far uncharacterized dynamics and substrate interactions of two large protein complexes, providing unprecedented insight into the relationship between dynamics, structure and function. Since most proteins are dynamic, extending the scope of protein complexes that are amenable to NMR study is of great interest to many areas of molecular biology. Studies will be conducted on the eukaryotic exosome, a 370 kDa soluble, asymmetric decamer involved in RNA degradation and processing, and the 80 kDa Na+/H+ antiporter NapA, an integral membrane dimer involved in ion transport. For the exosome, individual subunits will be 13C-methyl labeled; the employment of sophisticated NMR methods will then permit the detection of functionally essential dynamics and RNA-substrate binding patterns of the exosome. As NapA is a low-yield membrane protein, an inexpensive 19F-labeling approach will be employed to reveal global transport dynamics and local gating motions. Exosome production and all NMR experiments are to be conducted in Remco Spranger’s lab at the University of Regensburg, Germany. NapA will be produced during a secondment in David Drew’s lab at Stockholm University, Sweden. This newly established international collaboration will permit integration of methods and knowledge to study protein systems previously inaccessible to NMR, strengthen the profile of the applicant and foster research of the involved institutes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences cell biology
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences molecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
93053 Regensburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.