Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

White Light-Emitting Diodes Based on Organometal Halide Perovskites

Project description

White perovskite LEDs on the way

Perovskites, known for their potential use in solar cells, also hold promise for the manufacturing of high-efficiency light-emitting diodes (LEDs). Although significant progress has been achieved in developing monochromatic perovskite LEDs, white perovskite LEDs have not yet been realised. The EU-funded WLEP project plans to produce efficient and stable white LEDs based on Ruddlesden-Popper (RP) phases – a type of perovskite structure that consists of 2D perovskite-like slabs interleaved with cations. The project's approach to producing high-quality white LED thin films will also be based on additive manufacturing and post-treatment techniques. The project will pave the way for the efficient and low-cost production of white perovskite LEDs that can significantly help reduce the energy consumption of lighting.

Objective

Recently, perovskite light-emitting diodes (LEDs) have emerged as a new generation of efficient and low-cost LED technology because of their unique optoelectronic properties. Although great advances and exciting progress have been achieved in monochromatic perovskite LEDs, no white perovskite LED has been reported yet.
This project targets the development of new white light-emitting perovskite (WLEP) emitters and high-performance white perovskite LEDs. Recent progress on Ruddlesden-Popper perovskites (RPPs) suggests a promising way for realizing WLEP thin films for high performance white LEDs. Therefore, in this project, I aim to develop efficient and stable white perovskite LEDs based on RPP thin films. Firstly, novel WLEP materials will be developed by using a strategy combining mixed A-site cations and rigid large organic cations. Secondly, high-quality WLEP thin films will be prepared through ‘cocktail’ approach-based additive engineering or/and post treatments. Ultimately, efficient and stable white perovskite LEDs will be fabricated by coupling new device architectures, device engineering and device physics. Also, the fellow will be trained to acquire new interdisciplinary knowledge and skills and to achieve professional maturity by implementing the project.
The expected results of this project will considerably advance the research field of perovskite LEDs, consequently promoting the academic reputation of the host organization, ensuring EU’s dominant role in the research field of perovskite optoelectronics and enhancing the international impact of EU. Meanwhile, the expected outcomes are new WLEP materials and white perovskite LEDs which have great potential for commercialization. In the long term, commercialization of efficient and low-cost white perovskite LEDs will reduce energy consumption of lighting, helping reach EU’s energy saving targets, and can also generate economic growth and new job opportunities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

LINKOPINGS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 203 852,16
Address
CAMPUS VALLA
581 83 Linkoping
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Östergötlands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 203 852,16
My booklet 0 0